Mister Exam

Integral of sinsinxx/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |  sin(sin(x))*x   
 |  ------------- dx
 |        x         
 |                  
/                   
0                   
$$\int\limits_{0}^{\infty} \frac{x \sin{\left(\sin{\left(x \right)} \right)}}{x}\, dx$$
Integral((sin(sin(x))*x)/x, (x, 0, oo))
The answer [src]
 oo               
  /               
 |                
 |  sin(sin(x)) dx
 |                
/                 
0                 
$$\int\limits_{0}^{\infty} \sin{\left(\sin{\left(x \right)} \right)}\, dx$$
=
=
 oo               
  /               
 |                
 |  sin(sin(x)) dx
 |                
/                 
0                 
$$\int\limits_{0}^{\infty} \sin{\left(\sin{\left(x \right)} \right)}\, dx$$
Integral(sin(sin(x)), (x, 0, oo))

    Use the examples entering the upper and lower limits of integration.