Mister Exam

Other calculators


sin(sinx)cosx

Integral of sin(sinx)cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  sin(sin(x))*cos(x) dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx$$
Integral(sin(sin(x))*cos(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of sine is negative cosine:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 | sin(sin(x))*cos(x) dx = C - cos(sin(x))
 |                                        
/                                         
$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx = C - \cos{\left(\sin{\left(x \right)} \right)}$$
The graph
The answer [src]
1 - cos(sin(1))
$$1 - \cos{\left(\sin{\left(1 \right)} \right)}$$
=
=
1 - cos(sin(1))
$$1 - \cos{\left(\sin{\left(1 \right)} \right)}$$
1 - cos(sin(1))
Numerical answer [src]
0.333633254607119
0.333633254607119
The graph
Integral of sin(sinx)cosx dx

    Use the examples entering the upper and lower limits of integration.