Integral of sin(n*pi*x)/l dx
The solution
The answer (Indefinite)
[src]
/ 0 for n = 0
|
/ <-cos(n*pi*x)
| |------------- otherwise
| sin(n*pi*x) \ pi*n
| ----------- dx = C + -------------------------
| l l
|
/
$$\int \frac{\sin{\left(x \pi n \right)}}{l}\, dx = C + \frac{\begin{cases} 0 & \text{for}\: n = 0 \\- \frac{\cos{\left(x \pi n \right)}}{\pi n} & \text{otherwise} \end{cases}}{l}$$
/ 1 cos(pi*l*n)
|------ - ----------- for And(n > -oo, n < oo, n != 0)
$$\begin{cases} - \frac{\cos{\left(\pi l n \right)}}{\pi l n} + \frac{1}{\pi l n} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/ 1 cos(pi*l*n)
|------ - ----------- for And(n > -oo, n < oo, n != 0)
$$\begin{cases} - \frac{\cos{\left(\pi l n \right)}}{\pi l n} + \frac{1}{\pi l n} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((1/(pi*l*n) - cos(pi*l*n)/(pi*l*n), (n > -oo)∧(n < oo)∧(Ne(n, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.