l - 2 / | | l /n*pi*x\ | -*sin|------| dx | 2 \ l / | / 0
Integral((l/2)*sin(((n*pi)*x)/l), (x, 0, l/2))
// 0 for n = 0\
|| |
|| /n*pi*x\ |
l*|<-l*cos|------| |
/ || \ l / |
| ||--------------- otherwise|
| l /n*pi*x\ \\ pi*n /
| -*sin|------| dx = C + -------------------------------
| 2 \ l / 2
|
/
/ 2 /pi*n\ | 2 l *cos|----| | l \ 2 / pi*n <------ - ------------ for ---- != 0 |2*pi*n 2*pi*n l | \ 0 otherwise
=
/ 2 /pi*n\ | 2 l *cos|----| | l \ 2 / pi*n <------ - ------------ for ---- != 0 |2*pi*n 2*pi*n l | \ 0 otherwise
Piecewise((l^2/(2*pi*n) - l^2*cos(pi*n/2)/(2*pi*n), Ne(pi*n/l, 0)), (0, True))
Use the examples entering the upper and lower limits of integration.