Mister Exam

Other calculators

Integral of (l/2)sin(npix/l)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  l                 
  -                 
  2                 
  /                 
 |                  
 |  l    /n*pi*x\   
 |  -*sin|------| dx
 |  2    \  l   /   
 |                  
/                   
0                   
$$\int\limits_{0}^{\frac{l}{2}} \frac{l}{2} \sin{\left(\frac{x \pi n}{l} \right)}\, dx$$
Integral((l/2)*sin(((n*pi)*x)/l), (x, 0, l/2))
The answer (Indefinite) [src]
                            //       0         for n = 0\
                            ||                          |
                            ||      /n*pi*x\            |
                          l*|<-l*cos|------|            |
  /                         ||      \  l   /            |
 |                          ||---------------  otherwise|
 | l    /n*pi*x\            \\      pi*n                /
 | -*sin|------| dx = C + -------------------------------
 | 2    \  l   /                         2               
 |                                                       
/                                                        
$$\int \frac{l}{2} \sin{\left(\frac{x \pi n}{l} \right)}\, dx = C + \frac{l \left(\begin{cases} 0 & \text{for}\: n = 0 \\- \frac{l \cos{\left(\frac{x \pi n}{l} \right)}}{\pi n} & \text{otherwise} \end{cases}\right)}{2}$$
The answer [src]
/          2    /pi*n\               
|   2     l *cos|----|               
|  l            \ 2  /      pi*n     
<------ - ------------  for ---- != 0
|2*pi*n      2*pi*n          l       
|                                    
\          0              otherwise  
$$\begin{cases} - \frac{l^{2} \cos{\left(\frac{\pi n}{2} \right)}}{2 \pi n} + \frac{l^{2}}{2 \pi n} & \text{for}\: \frac{\pi n}{l} \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/          2    /pi*n\               
|   2     l *cos|----|               
|  l            \ 2  /      pi*n     
<------ - ------------  for ---- != 0
|2*pi*n      2*pi*n          l       
|                                    
\          0              otherwise  
$$\begin{cases} - \frac{l^{2} \cos{\left(\frac{\pi n}{2} \right)}}{2 \pi n} + \frac{l^{2}}{2 \pi n} & \text{for}\: \frac{\pi n}{l} \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((l^2/(2*pi*n) - l^2*cos(pi*n/2)/(2*pi*n), Ne(pi*n/l, 0)), (0, True))

    Use the examples entering the upper and lower limits of integration.