Mister Exam

Integral of sin^3xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     3        
 |  sin (x)*1 dx
 |              
/               
0               
01sin3(x)1dx\int\limits_{0}^{1} \sin^{3}{\left(x \right)} 1\, dx
Integral(sin(x)^3*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin3(x)1=(1cos2(x))sin(x)\sin^{3}{\left(x \right)} 1 = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(x)u = \cos{\left(x \right)}.

      Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

      (u21)du\int \left(u^{2} - 1\right)\, du

      1. Integrate term-by-term:

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        1. The integral of a constant is the constant times the variable of integration:

          (1)du=u\int \left(-1\right)\, du = - u

        The result is: u33u\frac{u^{3}}{3} - u

      Now substitute uu back in:

      cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x))sin(x)=sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos2(x))dx=sin(x)cos2(x)dx\int \left(- \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u2du\int u^{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: cos3(x)3\frac{\cos^{3}{\left(x \right)}}{3}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

    Method #3

    1. Rewrite the integrand:

      (1cos2(x))sin(x)=sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos2(x))dx=sin(x)cos2(x)dx\int \left(- \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u2du\int u^{2}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          Now substitute uu back in:

          cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

        So, the result is: cos3(x)3\frac{\cos^{3}{\left(x \right)}}{3}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      The result is: cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

  3. Now simplify:

    (cos(2x)5)cos(x)6\frac{\left(\cos{\left(2 x \right)} - 5\right) \cos{\left(x \right)}}{6}

  4. Add the constant of integration:

    (cos(2x)5)cos(x)6+constant\frac{\left(\cos{\left(2 x \right)} - 5\right) \cos{\left(x \right)}}{6}+ \mathrm{constant}


The answer is:

(cos(2x)5)cos(x)6+constant\frac{\left(\cos{\left(2 x \right)} - 5\right) \cos{\left(x \right)}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                3   
 |    3                        cos (x)
 | sin (x)*1 dx = C - cos(x) + -------
 |                                3   
/                                     
sin3(x)1dx=cos3(x)3+Ccos(x)\int \sin^{3}{\left(x \right)} 1\, dx = \frac{\cos^{3}{\left(x \right)}}{3} + C - \cos{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
                3   
2            cos (1)
- - cos(1) + -------
3               3   
cos313cos13+23{{\cos ^31-3\,\cos 1}\over{3}}+{{2}\over{3}}
=
=
                3   
2            cos (1)
- - cos(1) + -------
3               3   
cos(1)+cos3(1)3+23- \cos{\left(1 \right)} + \frac{\cos^{3}{\left(1 \right)}}{3} + \frac{2}{3}
Numerical answer [src]
0.178940562548858
0.178940562548858
The graph
Integral of sin^3xdx dx

    Use the examples entering the upper and lower limits of integration.