Mister Exam

Other calculators


sin^3x*cos^3x

Integral of sin^3x*cos^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     3       3      
 |  sin (x)*cos (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin^{3}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$
Integral(sin(x)^3*cos(x)^3, (x, 0, 1))
The graph
The answer [src]
     6         4   
  sin (1)   sin (1)
- ------- + -------
     6         4   
$$- \frac{\sin^{6}{\left(1 \right)}}{6} + \frac{\sin^{4}{\left(1 \right)}}{4}$$
=
=
     6         4   
  sin (1)   sin (1)
- ------- + -------
     6         4   
$$- \frac{\sin^{6}{\left(1 \right)}}{6} + \frac{\sin^{4}{\left(1 \right)}}{4}$$
-sin(1)^6/6 + sin(1)^4/4
Numerical answer [src]
0.0661744365394513
0.0661744365394513
The graph
Integral of sin^3x*cos^3x dx

    Use the examples entering the upper and lower limits of integration.