Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2 4 4 2
- 3*cos (x)*sin (x) + 3*cos (x)*sin (x)
$$- 3 \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)} + 3 \sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)}$$
The second derivative
[src]
/ 2 / 2 2 \ 2 / 2 2 \ 2 2 \
3*\sin (x)*\- cos (x) + 2*sin (x)/ - cos (x)*\sin (x) - 2*cos (x)/ - 6*cos (x)*sin (x)/*cos(x)*sin(x)
$$3 \left(- \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} + \left(2 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} - 6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}$$
The third derivative
[src]
/ 4 / 2 2 \ 4 / 2 2 \ 2 2 / 2 2 \ 2 2 / 2 2 \\
3*\- cos (x)*\- 2*cos (x) + 7*sin (x)/ - sin (x)*\- 7*cos (x) + 2*sin (x)/ + 9*cos (x)*sin (x)*\sin (x) - 2*cos (x)/ + 9*cos (x)*sin (x)*\- cos (x) + 2*sin (x)//
$$3 \cdot \left(9 \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} - \left(2 \sin^{2}{\left(x \right)} - 7 \cos^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} + 9 \cdot \left(2 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} - \left(7 \sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \cos^{4}{\left(x \right)}\right)$$