Mister Exam

Other calculators


sin^3x/(2+cosx)

Integral of sin^3x/(2+cosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      3        
 |   sin (x)     
 |  ---------- dx
 |  2 + cos(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sin^{3}{\left(x \right)}}{\cos{\left(x \right)} + 2}\, dx$$
Integral(sin(x)^3/(2 + cos(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                                                                                                                                                                             
 |                                                           2/x\                  /       2/x\\             /       2/x\\          2/x\    /       2/x\\        4/x\    /       2/x\\        4/x\    /       2/x\\        2/x\    /       2/x\\
 |     3                                                6*tan |-|             3*log|1 + tan |-||        3*log|3 + tan |-||     6*tan |-|*log|1 + tan |-||   3*tan |-|*log|1 + tan |-||   3*tan |-|*log|3 + tan |-||   6*tan |-|*log|3 + tan |-||
 |  sin (x)                       4                           \2/                  \        \2//             \        \2//           \2/    \        \2//         \2/    \        \2//         \2/    \        \2//         \2/    \        \2//
 | ---------- dx = C - ----------------------- - ----------------------- - ----------------------- + ----------------------- - -------------------------- - -------------------------- + -------------------------- + --------------------------
 | 2 + cos(x)                 4/x\        2/x\          4/x\        2/x\          4/x\        2/x\          4/x\        2/x\           4/x\        2/x\             4/x\        2/x\             4/x\        2/x\             4/x\        2/x\  
 |                     1 + tan |-| + 2*tan |-|   1 + tan |-| + 2*tan |-|   1 + tan |-| + 2*tan |-|   1 + tan |-| + 2*tan |-|    1 + tan |-| + 2*tan |-|      1 + tan |-| + 2*tan |-|      1 + tan |-| + 2*tan |-|      1 + tan |-| + 2*tan |-|  
/                              \2/         \2/           \2/         \2/           \2/         \2/           \2/         \2/            \2/         \2/              \2/         \2/              \2/         \2/              \2/         \2/  
$$\int \frac{\sin^{3}{\left(x \right)}}{\cos{\left(x \right)} + 2}\, dx = C - \frac{3 \log{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1 \right)} \tan^{4}{\left(\frac{x}{2} \right)}}{\tan^{4}{\left(\frac{x}{2} \right)} + 2 \tan^{2}{\left(\frac{x}{2} \right)} + 1} - \frac{6 \log{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1 \right)} \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{4}{\left(\frac{x}{2} \right)} + 2 \tan^{2}{\left(\frac{x}{2} \right)} + 1} - \frac{3 \log{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1 \right)}}{\tan^{4}{\left(\frac{x}{2} \right)} + 2 \tan^{2}{\left(\frac{x}{2} \right)} + 1} + \frac{3 \log{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 3 \right)} \tan^{4}{\left(\frac{x}{2} \right)}}{\tan^{4}{\left(\frac{x}{2} \right)} + 2 \tan^{2}{\left(\frac{x}{2} \right)} + 1} + \frac{6 \log{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 3 \right)} \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{4}{\left(\frac{x}{2} \right)} + 2 \tan^{2}{\left(\frac{x}{2} \right)} + 1} + \frac{3 \log{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 3 \right)}}{\tan^{4}{\left(\frac{x}{2} \right)} + 2 \tan^{2}{\left(\frac{x}{2} \right)} + 1} - \frac{6 \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{4}{\left(\frac{x}{2} \right)} + 2 \tan^{2}{\left(\frac{x}{2} \right)} + 1} - \frac{4}{\tan^{4}{\left(\frac{x}{2} \right)} + 2 \tan^{2}{\left(\frac{x}{2} \right)} + 1}$$
The graph
The answer [src]
                                                          2                         /       2     \               /       2     \           2         /       2     \        4         /       2     \        4         /       2     \        2         /       2     \
                 4                                   6*tan (1/2)               3*log\1 + tan (1/2)/          3*log\3 + tan (1/2)/      6*tan (1/2)*log\1 + tan (1/2)/   3*tan (1/2)*log\1 + tan (1/2)/   3*tan (1/2)*log\3 + tan (1/2)/   6*tan (1/2)*log\3 + tan (1/2)/
4 - --------------------------- - 3*log(3) - --------------------------- - --------------------------- + --------------------------- - ------------------------------ - ------------------------------ + ------------------------------ + ------------------------------
           4             2                          4             2               4             2               4             2                4             2                  4             2                  4             2                  4             2       
    1 + tan (1/2) + 2*tan (1/2)              1 + tan (1/2) + 2*tan (1/2)   1 + tan (1/2) + 2*tan (1/2)   1 + tan (1/2) + 2*tan (1/2)    1 + tan (1/2) + 2*tan (1/2)      1 + tan (1/2) + 2*tan (1/2)      1 + tan (1/2) + 2*tan (1/2)      1 + tan (1/2) + 2*tan (1/2)  
$$- 3 \log{\left(3 \right)} - \frac{4}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} - \frac{6 \tan^{2}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} - \frac{3 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} - \frac{6 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)} \tan^{2}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} - \frac{3 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)} \tan^{4}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} + \frac{3 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 3 \right)} \tan^{4}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} + \frac{6 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 3 \right)} \tan^{2}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} + \frac{3 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 3 \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} + 4$$
=
=
                                                          2                         /       2     \               /       2     \           2         /       2     \        4         /       2     \        4         /       2     \        2         /       2     \
                 4                                   6*tan (1/2)               3*log\1 + tan (1/2)/          3*log\3 + tan (1/2)/      6*tan (1/2)*log\1 + tan (1/2)/   3*tan (1/2)*log\1 + tan (1/2)/   3*tan (1/2)*log\3 + tan (1/2)/   6*tan (1/2)*log\3 + tan (1/2)/
4 - --------------------------- - 3*log(3) - --------------------------- - --------------------------- + --------------------------- - ------------------------------ - ------------------------------ + ------------------------------ + ------------------------------
           4             2                          4             2               4             2               4             2                4             2                  4             2                  4             2                  4             2       
    1 + tan (1/2) + 2*tan (1/2)              1 + tan (1/2) + 2*tan (1/2)   1 + tan (1/2) + 2*tan (1/2)   1 + tan (1/2) + 2*tan (1/2)    1 + tan (1/2) + 2*tan (1/2)      1 + tan (1/2) + 2*tan (1/2)      1 + tan (1/2) + 2*tan (1/2)      1 + tan (1/2) + 2*tan (1/2)  
$$- 3 \log{\left(3 \right)} - \frac{4}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} - \frac{6 \tan^{2}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} - \frac{3 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} - \frac{6 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)} \tan^{2}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} - \frac{3 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 1 \right)} \tan^{4}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} + \frac{3 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 3 \right)} \tan^{4}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} + \frac{6 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 3 \right)} \tan^{2}{\left(\frac{1}{2} \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} + \frac{3 \log{\left(\tan^{2}{\left(\frac{1}{2} \right)} + 3 \right)}}{\tan^{4}{\left(\frac{1}{2} \right)} + 2 \tan^{2}{\left(\frac{1}{2} \right)} + 1} + 4$$
4 - 4/(1 + tan(1/2)^4 + 2*tan(1/2)^2) - 3*log(3) - 6*tan(1/2)^2/(1 + tan(1/2)^4 + 2*tan(1/2)^2) - 3*log(1 + tan(1/2)^2)/(1 + tan(1/2)^4 + 2*tan(1/2)^2) + 3*log(3 + tan(1/2)^2)/(1 + tan(1/2)^4 + 2*tan(1/2)^2) - 6*tan(1/2)^2*log(1 + tan(1/2)^2)/(1 + tan(1/2)^4 + 2*tan(1/2)^2) - 3*tan(1/2)^4*log(1 + tan(1/2)^2)/(1 + tan(1/2)^4 + 2*tan(1/2)^2) + 3*tan(1/2)^4*log(3 + tan(1/2)^2)/(1 + tan(1/2)^4 + 2*tan(1/2)^2) + 6*tan(1/2)^2*log(3 + tan(1/2)^2)/(1 + tan(1/2)^4 + 2*tan(1/2)^2)
Numerical answer [src]
0.0663710891426482
0.0663710891426482
The graph
Integral of sin^3x/(2+cosx) dx

    Use the examples entering the upper and lower limits of integration.