Integral of sin(ax+b) dx
The solution
The answer (Indefinite)
[src]
/ //-cos(a*x + b) \
| ||-------------- for a != 0|
| sin(a*x + b) dx = C + |< a |
| || |
/ \\ x*sin(b) otherwise /
∫sin(ax+b)dx=C+{−acos(ax+b)xsin(b)fora=0otherwise
/cos(b) cos(a + b)
|------ - ---------- for And(a > -oo, a < oo, a != 0)
< a a
|
\ sin(b) otherwise
{acos(b)−acos(a+b)sin(b)fora>−∞∧a<∞∧a=0otherwise
=
/cos(b) cos(a + b)
|------ - ---------- for And(a > -oo, a < oo, a != 0)
< a a
|
\ sin(b) otherwise
{acos(b)−acos(a+b)sin(b)fora>−∞∧a<∞∧a=0otherwise
Use the examples entering the upper and lower limits of integration.