Integral of sin(ax) dx
The solution
The answer (Indefinite)
[src]
/ //-cos(a*x) \
| ||---------- for a != 0|
| sin(a*x) dx = C + |< a |
| || |
/ \\ 0 otherwise /
$$\int \sin{\left(a x \right)}\, dx = C + \begin{cases} - \frac{\cos{\left(a x \right)}}{a} & \text{for}\: a \neq 0 \\0 & \text{otherwise} \end{cases}$$
/1 cos(a)
|- - ------ for And(a > -oo, a < oo, a != 0)
$$\begin{cases} - \frac{\cos{\left(a \right)}}{a} + \frac{1}{a} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/1 cos(a)
|- - ------ for And(a > -oo, a < oo, a != 0)
$$\begin{cases} - \frac{\cos{\left(a \right)}}{a} + \frac{1}{a} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((1/a - cos(a)/a, (a > -oo)∧(a < oo)∧(Ne(a, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.