Mister Exam

Integral of sin(7x)sin(9x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(7*x)*sin(9*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(7 x \right)} \sin{\left(9 x \right)}\, dx$$
Integral(sin(7*x)*sin(9*x), (x, 0, 1))
The graph
The answer [src]
  9*cos(9)*sin(7)   7*cos(7)*sin(9)
- --------------- + ---------------
         32                32      
$$\frac{7 \sin{\left(9 \right)} \cos{\left(7 \right)}}{32} - \frac{9 \sin{\left(7 \right)} \cos{\left(9 \right)}}{32}$$
=
=
  9*cos(9)*sin(7)   7*cos(7)*sin(9)
- --------------- + ---------------
         32                32      
$$\frac{7 \sin{\left(9 \right)} \cos{\left(7 \right)}}{32} - \frac{9 \sin{\left(7 \right)} \cos{\left(9 \right)}}{32}$$
-9*cos(9)*sin(7)/32 + 7*cos(7)*sin(9)/32
Numerical answer [src]
0.236321335352204
0.236321335352204
The graph
Integral of sin(7x)sin(9x) dx

    Use the examples entering the upper and lower limits of integration.