Mister Exam

Integral of sin5xsin3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(5*x)*sin(3*x) dx
 |                      
/                       
0                       
01sin(3x)sin(5x)dx\int\limits_{0}^{1} \sin{\left(3 x \right)} \sin{\left(5 x \right)}\, dx
Integral(sin(5*x)*sin(3*x), (x, 0, 1))
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
  5*cos(5)*sin(3)   3*cos(3)*sin(5)
- --------------- + ---------------
         16                16      
5sin(3)cos(5)16+3sin(5)cos(3)16- \frac{5 \sin{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{3 \sin{\left(5 \right)} \cos{\left(3 \right)}}{16}
=
=
  5*cos(5)*sin(3)   3*cos(3)*sin(5)
- --------------- + ---------------
         16                16      
5sin(3)cos(5)16+3sin(5)cos(3)16- \frac{5 \sin{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{3 \sin{\left(5 \right)} \cos{\left(3 \right)}}{16}
-5*cos(5)*sin(3)/16 + 3*cos(3)*sin(5)/16
Numerical answer [src]
0.165489466292459
0.165489466292459
The graph
Integral of sin5xsin3x dx

    Use the examples entering the upper and lower limits of integration.