Mister Exam

Other calculators

Integral of sin(5*x)*sin(3*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(5*x)*sin(3*x) dx
 |                      
/                       
0                       
01sin(3x)sin(5x)dx\int\limits_{0}^{1} \sin{\left(3 x \right)} \sin{\left(5 x \right)}\, dx
Integral(sin(5*x)*sin(3*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin(3x)sin(5x)=64sin8(x)+128sin6(x)80sin4(x)+15sin2(x)\sin{\left(3 x \right)} \sin{\left(5 x \right)} = - 64 \sin^{8}{\left(x \right)} + 128 \sin^{6}{\left(x \right)} - 80 \sin^{4}{\left(x \right)} + 15 \sin^{2}{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (64sin8(x))dx=64sin8(x)dx\int \left(- 64 \sin^{8}{\left(x \right)}\right)\, dx = - 64 \int \sin^{8}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin8(x)=(12cos(2x)2)4\sin^{8}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{4}

      2. There are multiple ways to do this integral.

        Method #1

        1. Rewrite the integrand:

          (12cos(2x)2)4=cos4(2x)16cos3(2x)4+3cos2(2x)8cos(2x)4+116\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{4} = \frac{\cos^{4}{\left(2 x \right)}}{16} - \frac{\cos^{3}{\left(2 x \right)}}{4} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{4} + \frac{1}{16}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos4(2x)16dx=cos4(2x)dx16\int \frac{\cos^{4}{\left(2 x \right)}}{16}\, dx = \frac{\int \cos^{4}{\left(2 x \right)}\, dx}{16}

            1. Rewrite the integrand:

              cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

            2. Rewrite the integrand:

              (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

            3. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

                1. Rewrite the integrand:

                  cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                    1. Let u=8xu = 8 x.

                      Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                      cos(u)8du\int \frac{\cos{\left(u \right)}}{8}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)du=cos(u)du8\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                      Now substitute uu back in:

                      sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                    So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                  1. The integral of a constant is the constant times the variable of integration:

                    12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                  The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

                So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

              The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

            So, the result is: 3x128+sin(4x)128+sin(8x)1024\frac{3 x}{128} + \frac{\sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (cos3(2x)4)dx=cos3(2x)dx4\int \left(- \frac{\cos^{3}{\left(2 x \right)}}{4}\right)\, dx = - \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{4}

            1. Rewrite the integrand:

              cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

            2. There are multiple ways to do this integral.

              Method #1

              1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

                (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

                1. Integrate term-by-term:

                  1. The integral of a constant is the constant times the variable of integration:

                    12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                      u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                    So, the result is: u36- \frac{u^{3}}{6}

                  The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

                Now substitute uu back in:

                sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

              Method #2

              1. Rewrite the integrand:

                (1sin2(2x))cos(2x)=sin2(2x)cos(2x)+cos(2x)\left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)} = - \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)} + \cos{\left(2 x \right)}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin2(2x)cos(2x))dx=sin2(2x)cos(2x)dx\int \left(- \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\right)\, dx = - \int \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx

                  1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                    Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

                    u22du\int \frac{u^{2}}{2}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      u2du=u2du2\int u^{2}\, du = \frac{\int u^{2}\, du}{2}

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u36\frac{u^{3}}{6}

                    Now substitute uu back in:

                    sin3(2x)6\frac{\sin^{3}{\left(2 x \right)}}{6}

                  So, the result is: sin3(2x)6- \frac{\sin^{3}{\left(2 x \right)}}{6}

                1. Let u=2xu = 2 x.

                  Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

                  cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  Now substitute uu back in:

                  sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

                The result is: sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

              Method #3

              1. Rewrite the integrand:

                (1sin2(2x))cos(2x)=sin2(2x)cos(2x)+cos(2x)\left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)} = - \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)} + \cos{\left(2 x \right)}

              2. Integrate term-by-term:

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (sin2(2x)cos(2x))dx=sin2(2x)cos(2x)dx\int \left(- \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\right)\, dx = - \int \sin^{2}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx

                  1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

                    Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

                    u22du\int \frac{u^{2}}{2}\, du

                    1. The integral of a constant times a function is the constant times the integral of the function:

                      u2du=u2du2\int u^{2}\, du = \frac{\int u^{2}\, du}{2}

                      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                      So, the result is: u36\frac{u^{3}}{6}

                    Now substitute uu back in:

                    sin3(2x)6\frac{\sin^{3}{\left(2 x \right)}}{6}

                  So, the result is: sin3(2x)6- \frac{\sin^{3}{\left(2 x \right)}}{6}

                1. Let u=2xu = 2 x.

                  Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

                  cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

                  Now substitute uu back in:

                  sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

                The result is: sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: sin3(2x)24sin(2x)8\frac{\sin^{3}{\left(2 x \right)}}{24} - \frac{\sin{\left(2 x \right)}}{8}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

            1. Rewrite the integrand:

              cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

              The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

            So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (cos(2x)4)dx=cos(2x)dx4\int \left(- \frac{\cos{\left(2 x \right)}}{4}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{4}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

            So, the result is: sin(2x)8- \frac{\sin{\left(2 x \right)}}{8}

          1. The integral of a constant is the constant times the variable of integration:

            116dx=x16\int \frac{1}{16}\, dx = \frac{x}{16}

          The result is: 35x128+sin3(2x)24sin(2x)4+7sin(4x)128+sin(8x)1024\frac{35 x}{128} + \frac{\sin^{3}{\left(2 x \right)}}{24} - \frac{\sin{\left(2 x \right)}}{4} + \frac{7 \sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}

        Method #2

        1. Rewrite the integrand:

          (12cos(2x)2)4=cos4(2x)16cos3(2x)4+3cos2(2x)8cos(2x)4+116\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{4} = \frac{\cos^{4}{\left(2 x \right)}}{16} - \frac{\cos^{3}{\left(2 x \right)}}{4} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{4} + \frac{1}{16}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos4(2x)16dx=cos4(2x)dx16\int \frac{\cos^{4}{\left(2 x \right)}}{16}\, dx = \frac{\int \cos^{4}{\left(2 x \right)}\, dx}{16}

            1. Rewrite the integrand:

              cos4(2x)=(cos(4x)2+12)2\cos^{4}{\left(2 x \right)} = \left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2}

            2. Rewrite the integrand:

              (cos(4x)2+12)2=cos2(4x)4+cos(4x)2+14\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}\right)^{2} = \frac{\cos^{2}{\left(4 x \right)}}{4} + \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{4}

            3. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos2(4x)4dx=cos2(4x)dx4\int \frac{\cos^{2}{\left(4 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(4 x \right)}\, dx}{4}

                1. Rewrite the integrand:

                  cos2(4x)=cos(8x)2+12\cos^{2}{\left(4 x \right)} = \frac{\cos{\left(8 x \right)}}{2} + \frac{1}{2}

                2. Integrate term-by-term:

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(8x)2dx=cos(8x)dx2\int \frac{\cos{\left(8 x \right)}}{2}\, dx = \frac{\int \cos{\left(8 x \right)}\, dx}{2}

                    1. Let u=8xu = 8 x.

                      Then let du=8dxdu = 8 dx and substitute du8\frac{du}{8}:

                      cos(u)8du\int \frac{\cos{\left(u \right)}}{8}\, du

                      1. The integral of a constant times a function is the constant times the integral of the function:

                        cos(u)du=cos(u)du8\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{8}

                        1. The integral of cosine is sine:

                          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                        So, the result is: sin(u)8\frac{\sin{\left(u \right)}}{8}

                      Now substitute uu back in:

                      sin(8x)8\frac{\sin{\left(8 x \right)}}{8}

                    So, the result is: sin(8x)16\frac{\sin{\left(8 x \right)}}{16}

                  1. The integral of a constant is the constant times the variable of integration:

                    12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

                  The result is: x2+sin(8x)16\frac{x}{2} + \frac{\sin{\left(8 x \right)}}{16}

                So, the result is: x8+sin(8x)64\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64}

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

              The result is: 3x8+sin(4x)8+sin(8x)64\frac{3 x}{8} + \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}

            So, the result is: 3x128+sin(4x)128+sin(8x)1024\frac{3 x}{128} + \frac{\sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (cos3(2x)4)dx=cos3(2x)dx4\int \left(- \frac{\cos^{3}{\left(2 x \right)}}{4}\right)\, dx = - \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{4}

            1. Rewrite the integrand:

              cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

            2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

              Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

              (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

              1. Integrate term-by-term:

                1. The integral of a constant is the constant times the variable of integration:

                  12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

                1. The integral of a constant times a function is the constant times the integral of the function:

                  (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                  1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                    u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                  So, the result is: u36- \frac{u^{3}}{6}

                The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

              Now substitute uu back in:

              sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

            So, the result is: sin3(2x)24sin(2x)8\frac{\sin^{3}{\left(2 x \right)}}{24} - \frac{\sin{\left(2 x \right)}}{8}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

            1. Rewrite the integrand:

              cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

            2. Integrate term-by-term:

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

                1. Let u=4xu = 4 x.

                  Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                  cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                  1. The integral of a constant times a function is the constant times the integral of the function:

                    cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                    1. The integral of cosine is sine:

                      cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                    So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                  Now substitute uu back in:

                  sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

                So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

              1. The integral of a constant is the constant times the variable of integration:

                12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

              The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

            So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (cos(2x)4)dx=cos(2x)dx4\int \left(- \frac{\cos{\left(2 x \right)}}{4}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{4}

            1. Let u=2xu = 2 x.

              Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

              cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

              Now substitute uu back in:

              sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

            So, the result is: sin(2x)8- \frac{\sin{\left(2 x \right)}}{8}

          1. The integral of a constant is the constant times the variable of integration:

            116dx=x16\int \frac{1}{16}\, dx = \frac{x}{16}

          The result is: 35x128+sin3(2x)24sin(2x)4+7sin(4x)128+sin(8x)1024\frac{35 x}{128} + \frac{\sin^{3}{\left(2 x \right)}}{24} - \frac{\sin{\left(2 x \right)}}{4} + \frac{7 \sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}

      So, the result is: 35x28sin3(2x)3+16sin(2x)7sin(4x)2sin(8x)16- \frac{35 x}{2} - \frac{8 \sin^{3}{\left(2 x \right)}}{3} + 16 \sin{\left(2 x \right)} - \frac{7 \sin{\left(4 x \right)}}{2} - \frac{\sin{\left(8 x \right)}}{16}

    1. The integral of a constant times a function is the constant times the integral of the function:

      128sin6(x)dx=128sin6(x)dx\int 128 \sin^{6}{\left(x \right)}\, dx = 128 \int \sin^{6}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin6(x)=(12cos(2x)2)3\sin^{6}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{3}

      2. Rewrite the integrand:

        (12cos(2x)2)3=cos3(2x)8+3cos2(2x)83cos(2x)8+18\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{3} = - \frac{\cos^{3}{\left(2 x \right)}}{8} + \frac{3 \cos^{2}{\left(2 x \right)}}{8} - \frac{3 \cos{\left(2 x \right)}}{8} + \frac{1}{8}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos3(2x)8)dx=cos3(2x)dx8\int \left(- \frac{\cos^{3}{\left(2 x \right)}}{8}\right)\, dx = - \frac{\int \cos^{3}{\left(2 x \right)}\, dx}{8}

          1. Rewrite the integrand:

            cos3(2x)=(1sin2(2x))cos(2x)\cos^{3}{\left(2 x \right)} = \left(1 - \sin^{2}{\left(2 x \right)}\right) \cos{\left(2 x \right)}

          2. Let u=sin(2x)u = \sin{\left(2 x \right)}.

            Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute dudu:

            (12u22)du\int \left(\frac{1}{2} - \frac{u^{2}}{2}\right)\, du

            1. Integrate term-by-term:

              1. The integral of a constant is the constant times the variable of integration:

                12du=u2\int \frac{1}{2}\, du = \frac{u}{2}

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u22)du=u2du2\int \left(- \frac{u^{2}}{2}\right)\, du = - \frac{\int u^{2}\, du}{2}

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

                So, the result is: u36- \frac{u^{3}}{6}

              The result is: u36+u2- \frac{u^{3}}{6} + \frac{u}{2}

            Now substitute uu back in:

            sin3(2x)6+sin(2x)2- \frac{\sin^{3}{\left(2 x \right)}}{6} + \frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin3(2x)48sin(2x)16\frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(2 x \right)}}{16}

        1. The integral of a constant times a function is the constant times the integral of the function:

          3cos2(2x)8dx=3cos2(2x)dx8\int \frac{3 \cos^{2}{\left(2 x \right)}}{8}\, dx = \frac{3 \int \cos^{2}{\left(2 x \right)}\, dx}{8}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: 3x16+3sin(4x)64\frac{3 x}{16} + \frac{3 \sin{\left(4 x \right)}}{64}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (3cos(2x)8)dx=3cos(2x)dx8\int \left(- \frac{3 \cos{\left(2 x \right)}}{8}\right)\, dx = - \frac{3 \int \cos{\left(2 x \right)}\, dx}{8}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: 3sin(2x)16- \frac{3 \sin{\left(2 x \right)}}{16}

        1. The integral of a constant is the constant times the variable of integration:

          18dx=x8\int \frac{1}{8}\, dx = \frac{x}{8}

        The result is: 5x16+sin3(2x)48sin(2x)4+3sin(4x)64\frac{5 x}{16} + \frac{\sin^{3}{\left(2 x \right)}}{48} - \frac{\sin{\left(2 x \right)}}{4} + \frac{3 \sin{\left(4 x \right)}}{64}

      So, the result is: 40x+8sin3(2x)332sin(2x)+6sin(4x)40 x + \frac{8 \sin^{3}{\left(2 x \right)}}{3} - 32 \sin{\left(2 x \right)} + 6 \sin{\left(4 x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (80sin4(x))dx=80sin4(x)dx\int \left(- 80 \sin^{4}{\left(x \right)}\right)\, dx = - 80 \int \sin^{4}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin4(x)=(12cos(2x)2)2\sin^{4}{\left(x \right)} = \left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2}

      2. Rewrite the integrand:

        (12cos(2x)2)2=cos2(2x)4cos(2x)2+14\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)^{2} = \frac{\cos^{2}{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{2} + \frac{1}{4}

      3. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos2(2x)4dx=cos2(2x)dx4\int \frac{\cos^{2}{\left(2 x \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(2 x \right)}\, dx}{4}

          1. Rewrite the integrand:

            cos2(2x)=cos(4x)2+12\cos^{2}{\left(2 x \right)} = \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

          2. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(4x)2dx=cos(4x)dx2\int \frac{\cos{\left(4 x \right)}}{2}\, dx = \frac{\int \cos{\left(4 x \right)}\, dx}{2}

              1. Let u=4xu = 4 x.

                Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

                cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

                1. The integral of a constant times a function is the constant times the integral of the function:

                  cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

                  1. The integral of cosine is sine:

                    cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                  So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

                Now substitute uu back in:

                sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

              So, the result is: sin(4x)8\frac{\sin{\left(4 x \right)}}{8}

            1. The integral of a constant is the constant times the variable of integration:

              12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

            The result is: x2+sin(4x)8\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}

          So, the result is: x8+sin(4x)32\frac{x}{8} + \frac{\sin{\left(4 x \right)}}{32}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

        1. The integral of a constant is the constant times the variable of integration:

          14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

        The result is: 3x8sin(2x)4+sin(4x)32\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{32}

      So, the result is: 30x+20sin(2x)5sin(4x)2- 30 x + 20 \sin{\left(2 x \right)} - \frac{5 \sin{\left(4 x \right)}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      15sin2(x)dx=15sin2(x)dx\int 15 \sin^{2}{\left(x \right)}\, dx = 15 \int \sin^{2}{\left(x \right)}\, dx

      1. Rewrite the integrand:

        sin2(x)=12cos(2x)2\sin^{2}{\left(x \right)} = \frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

          1. Let u=2xu = 2 x.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

              1. The integral of cosine is sine:

                cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

              So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

            Now substitute uu back in:

            sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

          So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

        The result is: x2sin(2x)4\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}

      So, the result is: 15x215sin(2x)4\frac{15 x}{2} - \frac{15 \sin{\left(2 x \right)}}{4}

    The result is: sin(2x)4sin(8x)16\frac{\sin{\left(2 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{16}

  3. Add the constant of integration:

    sin(2x)4sin(8x)16+constant\frac{\sin{\left(2 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{16}+ \mathrm{constant}


The answer is:

sin(2x)4sin(8x)16+constant\frac{\sin{\left(2 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{16}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              
 |                            sin(8*x)   sin(2*x)
 | sin(5*x)*sin(3*x) dx = C - -------- + --------
 |                               16         4    
/                                                
sin(3x)sin(5x)dx=C+sin(2x)4sin(8x)16\int \sin{\left(3 x \right)} \sin{\left(5 x \right)}\, dx = C + \frac{\sin{\left(2 x \right)}}{4} - \frac{\sin{\left(8 x \right)}}{16}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
  5*cos(5)*sin(3)   3*cos(3)*sin(5)
- --------------- + ---------------
         16                16      
5sin(3)cos(5)16+3sin(5)cos(3)16- \frac{5 \sin{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{3 \sin{\left(5 \right)} \cos{\left(3 \right)}}{16}
=
=
  5*cos(5)*sin(3)   3*cos(3)*sin(5)
- --------------- + ---------------
         16                16      
5sin(3)cos(5)16+3sin(5)cos(3)16- \frac{5 \sin{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{3 \sin{\left(5 \right)} \cos{\left(3 \right)}}{16}
-5*cos(5)*sin(3)/16 + 3*cos(3)*sin(5)/16
Numerical answer [src]
0.165489466292459
0.165489466292459

    Use the examples entering the upper and lower limits of integration.