Mister Exam

Integral of sin5xsin7xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(5*x)*sin(7*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(5 x \right)} \sin{\left(7 x \right)}\, dx$$
Integral(sin(5*x)*sin(7*x), (x, 0, 1))
The graph
The answer [src]
  7*cos(7)*sin(5)   5*cos(5)*sin(7)
- --------------- + ---------------
         24                24      
$$\frac{5 \sin{\left(7 \right)} \cos{\left(5 \right)}}{24} - \frac{7 \sin{\left(5 \right)} \cos{\left(7 \right)}}{24}$$
=
=
  7*cos(7)*sin(5)   5*cos(5)*sin(7)
- --------------- + ---------------
         24                24      
$$\frac{5 \sin{\left(7 \right)} \cos{\left(5 \right)}}{24} - \frac{7 \sin{\left(5 \right)} \cos{\left(7 \right)}}{24}$$
-7*cos(7)*sin(5)/24 + 5*cos(5)*sin(7)/24
Numerical answer [src]
0.249681561623105
0.249681561623105
The graph
Integral of sin5xsin7xdx dx

    Use the examples entering the upper and lower limits of integration.