1 / | | 2 | x | --------- dx | 2 | / 2 \ | \x + 1/ | / 0
There are multiple ways to do this integral.
Rewrite the integrand:
Integrate term-by-term:
The integral of is .
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u)/2, symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)
So, the result is:
The result is:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of is .
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u)/2, symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)
So, the result is:
The result is:
Rewrite the integrand:
Rewrite the integrand:
Integrate term-by-term:
The integral of is .
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u)/2, symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 2 | x atan(x) x | --------- dx = C + ------- - ---------- | 2 2 / 2\ | / 2 \ 2*\1 + x / | \x + 1/ | /
1 pi - - + -- 4 8
=
1 pi - - + -- 4 8
Use the examples entering the upper and lower limits of integration.