Mister Exam

Other calculators


x²/(x²+1)²

Integral of x²/(x²+1)² dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       2      
 |      x       
 |  --------- dx
 |          2   
 |  / 2    \    
 |  \x  + 1/    
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{x^{2}}{\left(x^{2} + 1\right)^{2}}\, dx$$
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of is .

      1. The integral of a constant times a function is the constant times the integral of the function:

          TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u)/2, symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)

        So, the result is:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Rewrite the integrand:

    3. Integrate term-by-term:

      1. The integral of is .

      1. The integral of a constant times a function is the constant times the integral of the function:

          TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u)/2, symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)

        So, the result is:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Rewrite the integrand:

    3. Integrate term-by-term:

      1. The integral of is .

      1. The integral of a constant times a function is the constant times the integral of the function:

          TrigSubstitutionRule(theta=_theta, func=tan(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u)/2, symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=True, context=(x**2 + 1)**(-2), symbol=x)

        So, the result is:

      The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |      2                                 
 |     x              atan(x)       x     
 | --------- dx = C + ------- - ----------
 |         2             2        /     2\
 | / 2    \                     2*\1 + x /
 | \x  + 1/                               
 |                                        
/                                         
$${{\arctan x}\over{2}}-{{x}\over{2\,x^2+2}}$$
The graph
The answer [src]
  1   pi
- - + --
  4   8 
$${{\pi-2}\over{8}}$$
=
=
  1   pi
- - + --
  4   8 
$$- \frac{1}{4} + \frac{\pi}{8}$$
Numerical answer [src]
0.142699081698724
0.142699081698724
The graph
Integral of x²/(x²+1)² dx

    Use the examples entering the upper and lower limits of integration.