Mister Exam

Other calculators


sin(4x-3)dx

Integral of sin(4x-3)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  sin(4*x - 3) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \sin{\left(4 x - 3 \right)}\, dx$$
Integral(sin(4*x - 3), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                       cos(4*x - 3)
 | sin(4*x - 3) dx = C - ------------
 |                            4      
/                                    
$$\int \sin{\left(4 x - 3 \right)}\, dx = C - \frac{\cos{\left(4 x - 3 \right)}}{4}$$
The graph
The answer [src]
  cos(1)   cos(3)
- ------ + ------
    4        4   
$$\frac{\cos{\left(3 \right)}}{4} - \frac{\cos{\left(1 \right)}}{4}$$
=
=
  cos(1)   cos(3)
- ------ + ------
    4        4   
$$\frac{\cos{\left(3 \right)}}{4} - \frac{\cos{\left(1 \right)}}{4}$$
-cos(1)/4 + cos(3)/4
Numerical answer [src]
-0.382573700617146
-0.382573700617146
The graph
Integral of sin(4x-3)dx dx

    Use the examples entering the upper and lower limits of integration.