Mister Exam

Integral of sin4x/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi            
 --            
 4             
  /            
 |             
 |  sin(4*x)   
 |  -------- dx
 |     x       
 |             
/              
0              
$$\int\limits_{0}^{\frac{\pi}{4}} \frac{\sin{\left(4 x \right)}}{x}\, dx$$
Integral(sin(4*x)/x, (x, 0, pi/4))
Detail solution

    SiRule(a=4, b=0, context=sin(4*x)/x, symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                         
 |                          
 | sin(4*x)                 
 | -------- dx = C + Si(4*x)
 |    x                     
 |                          
/                           
$$\int \frac{\sin{\left(4 x \right)}}{x}\, dx = C + \operatorname{Si}{\left(4 x \right)}$$
The graph
The answer [src]
Si(pi)
$$\operatorname{Si}{\left(\pi \right)}$$
=
=
Si(pi)
$$\operatorname{Si}{\left(\pi \right)}$$
Si(pi)
Numerical answer [src]
1.85193705198247
1.85193705198247
The graph
Integral of sin4x/x dx

    Use the examples entering the upper and lower limits of integration.