Mister Exam

Other calculators


sin(3x^2)

Integral of sin(3x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     /   2\   
 |  sin\3*x / dx
 |              
/               
0               
01sin(3x2)dx\int\limits_{0}^{1} \sin{\left(3 x^{2} \right)}\, dx
Detail solution

    FresnelSRule(a=3, b=0, c=0, context=sin(3*x**2), symbol=x)

  1. Add the constant of integration:

    6πS(6xπ)6+constant\frac{\sqrt{6} \sqrt{\pi} S\left(\frac{\sqrt{6} x}{\sqrt{\pi}}\right)}{6}+ \mathrm{constant}


The answer is:

6πS(6xπ)6+constant\frac{\sqrt{6} \sqrt{\pi} S\left(\frac{\sqrt{6} x}{\sqrt{\pi}}\right)}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
                                    /    ___\
                        ___   ____  |x*\/ 6 |
  /                   \/ 6 *\/ pi *S|-------|
 |                                  |   ____|
 |    /   2\                        \ \/ pi /
 | sin\3*x / dx = C + -----------------------
 |                               6           
/                                            
π((23i+23)erf((23i+23)x2)+(23i23)erf((23i23)x2)+(2323i)erf(3ix)+(23i+23)erf((1)143x))48{{\sqrt{\pi}\,\left(\left(\sqrt{2}\,\sqrt{3}\,i+\sqrt{2}\,\sqrt{3} \right)\,\mathrm{erf}\left({{\left(\sqrt{2}\,\sqrt{3}\,i+\sqrt{2}\, \sqrt{3}\right)\,x}\over{2}}\right)+\left(\sqrt{2}\,\sqrt{3}\,i- \sqrt{2}\,\sqrt{3}\right)\,\mathrm{erf}\left({{\left(\sqrt{2}\, \sqrt{3}\,i-\sqrt{2}\,\sqrt{3}\right)\,x}\over{2}}\right)+\left( \sqrt{2}\,\sqrt{3}-\sqrt{2}\,\sqrt{3}\,i\right)\,\mathrm{erf}\left( \sqrt{3}\,\sqrt{-i}\,x\right)+\left(\sqrt{2}\,\sqrt{3}\,i+\sqrt{2}\, \sqrt{3}\right)\,\mathrm{erf}\left(\left(-1\right)^{{{1}\over{4}}}\, \sqrt{3}\,x\right)\right)}\over{48}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
              /  ___ \           
  ___   ____  |\/ 6  |           
\/ 6 *\/ pi *S|------|*Gamma(3/4)
              |  ____|           
              \\/ pi /           
---------------------------------
           8*Gamma(7/4)          
π((23i+23)erf(23i+232)+(23i23)erf(23i232)+(2323i)erf(3i)+(23i+23)erf((1)143))48{{\sqrt{\pi}\,\left(\left(\sqrt{2}\,\sqrt{3}\,i+\sqrt{2}\,\sqrt{3} \right)\,\mathrm{erf}\left({{\sqrt{2}\,\sqrt{3}\,i+\sqrt{2}\,\sqrt{3 }}\over{2}}\right)+\left(\sqrt{2}\,\sqrt{3}\,i-\sqrt{2}\,\sqrt{3} \right)\,\mathrm{erf}\left({{\sqrt{2}\,\sqrt{3}\,i-\sqrt{2}\,\sqrt{3 }}\over{2}}\right)+\left(\sqrt{2}\,\sqrt{3}-\sqrt{2}\,\sqrt{3}\,i \right)\,\mathrm{erf}\left(\sqrt{3}\,\sqrt{-i}\right)+\left(\sqrt{2} \,\sqrt{3}\,i+\sqrt{2}\,\sqrt{3}\right)\,\mathrm{erf}\left(\left(-1 \right)^{{{1}\over{4}}}\,\sqrt{3}\right)\right)}\over{48}}
=
=
              /  ___ \           
  ___   ____  |\/ 6  |           
\/ 6 *\/ pi *S|------|*Gamma(3/4)
              |  ____|           
              \\/ pi /           
---------------------------------
           8*Gamma(7/4)          
6πS(6π)Γ(34)8Γ(74)\frac{\sqrt{6} \sqrt{\pi} S\left(\frac{\sqrt{6}}{\sqrt{\pi}}\right) \Gamma\left(\frac{3}{4}\right)}{8 \Gamma\left(\frac{7}{4}\right)}
Numerical answer [src]
0.514976174485537
0.514976174485537
The graph
Integral of sin(3x^2) dx

    Use the examples entering the upper and lower limits of integration.