Mister Exam

Other calculators


sin^4(2x)cos(2x)

Integral of sin^4(2x)cos(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |     4                 
 |  sin (2*x)*cos(2*x) dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \sin^{4}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx$$
Integral(sin(2*x)^4*cos(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                                5     
 |    4                        sin (2*x)
 | sin (2*x)*cos(2*x) dx = C + ---------
 |                                 10   
/                                       
$${{\sin ^5\left(2\,x\right)}\over{10}}$$
The graph
The answer [src]
   5   
sin (2)
-------
   10  
$${{\sin ^52}\over{10}}$$
=
=
   5   
sin (2)
-------
   10  
$$\frac{\sin^{5}{\left(2 \right)}}{10}$$
Numerical answer [src]
0.062162691552263
0.062162691552263
The graph
Integral of sin^4(2x)cos(2x) dx

    Use the examples entering the upper and lower limits of integration.