Mister Exam

Other calculators


sin^4(2x)cos(2x)

Integral of sin^4(2x)cos(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |     4                 
 |  sin (2*x)*cos(2*x) dx
 |                       
/                        
0                        
01sin4(2x)cos(2x)dx\int\limits_{0}^{1} \sin^{4}{\left(2 x \right)} \cos{\left(2 x \right)}\, dx
Integral(sin(2*x)^4*cos(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

      Then let du=2cos(2x)dxdu = 2 \cos{\left(2 x \right)} dx and substitute du2\frac{du}{2}:

      u44du\int \frac{u^{4}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u42du=u4du2\int \frac{u^{4}}{2}\, du = \frac{\int u^{4}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        So, the result is: u510\frac{u^{5}}{10}

      Now substitute uu back in:

      sin5(2x)10\frac{\sin^{5}{\left(2 x \right)}}{10}

    Method #2

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      sin4(u)cos(u)4du\int \frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin4(u)cos(u)2du=sin4(u)cos(u)du2\int \frac{\sin^{4}{\left(u \right)} \cos{\left(u \right)}}{2}\, du = \frac{\int \sin^{4}{\left(u \right)} \cos{\left(u \right)}\, du}{2}

        1. Let u=sin(u)u = \sin{\left(u \right)}.

          Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

          u4du\int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          Now substitute uu back in:

          sin5(u)5\frac{\sin^{5}{\left(u \right)}}{5}

        So, the result is: sin5(u)10\frac{\sin^{5}{\left(u \right)}}{10}

      Now substitute uu back in:

      sin5(2x)10\frac{\sin^{5}{\left(2 x \right)}}{10}

  2. Add the constant of integration:

    sin5(2x)10+constant\frac{\sin^{5}{\left(2 x \right)}}{10}+ \mathrm{constant}


The answer is:

sin5(2x)10+constant\frac{\sin^{5}{\left(2 x \right)}}{10}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                5     
 |    4                        sin (2*x)
 | sin (2*x)*cos(2*x) dx = C + ---------
 |                                 10   
/                                       
sin5(2x)10{{\sin ^5\left(2\,x\right)}\over{10}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
   5   
sin (2)
-------
   10  
sin5210{{\sin ^52}\over{10}}
=
=
   5   
sin (2)
-------
   10  
sin5(2)10\frac{\sin^{5}{\left(2 \right)}}{10}
Numerical answer [src]
0.062162691552263
0.062162691552263
The graph
Integral of sin^4(2x)cos(2x) dx

    Use the examples entering the upper and lower limits of integration.