Integral of sin^4(2x)cos(2x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute 2du:
∫4u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 10u5
Now substitute u back in:
10sin5(2x)
Method #2
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4sin4(u)cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
Now substitute u back in:
10sin5(2x)
-
Add the constant of integration:
10sin5(2x)+constant
The answer is:
10sin5(2x)+constant
The answer (Indefinite)
[src]
/
| 5
| 4 sin (2*x)
| sin (2*x)*cos(2*x) dx = C + ---------
| 10
/
10sin5(2x)
The graph
10sin52
=
10sin5(2)
Use the examples entering the upper and lower limits of integration.