Mister Exam

Integral of sin3x*cos5xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(3*x)*cos(5*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(3 x \right)} \cos{\left(5 x \right)}\, dx$$
Integral(sin(3*x)*cos(5*x), (x, 0, 1))
The graph
The answer [src]
  3    3*cos(3)*cos(5)   5*sin(3)*sin(5)
- -- + --------------- + ---------------
  16          16                16      
$$- \frac{3}{16} + \frac{3 \cos{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{5 \sin{\left(3 \right)} \sin{\left(5 \right)}}{16}$$
=
=
  3    3*cos(3)*cos(5)   5*sin(3)*sin(5)
- -- + --------------- + ---------------
  16          16                16      
$$- \frac{3}{16} + \frac{3 \cos{\left(3 \right)} \cos{\left(5 \right)}}{16} + \frac{5 \sin{\left(3 \right)} \sin{\left(5 \right)}}{16}$$
-3/16 + 3*cos(3)*cos(5)/16 + 5*sin(3)*sin(5)/16
Numerical answer [src]
-0.282442957023747
-0.282442957023747
The graph
Integral of sin3x*cos5xdx dx

    Use the examples entering the upper and lower limits of integration.