Mister Exam

Integral of sin³xcos²x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     3       2      
 |  sin (x)*cos (x) dx
 |                    
/                     
0                     
01sin3(x)cos2(x)dx\int\limits_{0}^{1} \sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx
Integral(sin(x)^3*cos(x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin3(x)cos2(x)=(1cos2(x))sin(x)cos2(x)\sin^{3}{\left(x \right)} \cos^{2}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(x)u = \cos{\left(x \right)}.

      Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

      (u4u2)du\int \left(u^{4} - u^{2}\right)\, du

      1. Integrate term-by-term:

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        The result is: u55u33\frac{u^{5}}{5} - \frac{u^{3}}{3}

      Now substitute uu back in:

      cos5(x)5cos3(x)3\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

    Method #2

    1. Rewrite the integrand:

      (1cos2(x))sin(x)cos2(x)=sin(x)cos4(x)+sin(x)cos2(x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)} = - \sin{\left(x \right)} \cos^{4}{\left(x \right)} + \sin{\left(x \right)} \cos^{2}{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos4(x))dx=sin(x)cos4(x)dx\int \left(- \sin{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u4du\int u^{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: cos5(x)5\frac{\cos^{5}{\left(x \right)}}{5}

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u2du\int u^{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

      The result is: cos5(x)5cos3(x)3\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

    Method #3

    1. Rewrite the integrand:

      (1cos2(x))sin(x)cos2(x)=sin(x)cos4(x)+sin(x)cos2(x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)} = - \sin{\left(x \right)} \cos^{4}{\left(x \right)} + \sin{\left(x \right)} \cos^{2}{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin(x)cos4(x))dx=sin(x)cos4(x)dx\int \left(- \sin{\left(x \right)} \cos^{4}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{4}{\left(x \right)}\, dx

        1. Let u=cos(x)u = \cos{\left(x \right)}.

          Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

          u4du\int u^{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u4)du=u4du\int \left(- u^{4}\right)\, du = - \int u^{4}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

            So, the result is: u55- \frac{u^{5}}{5}

          Now substitute uu back in:

          cos5(x)5- \frac{\cos^{5}{\left(x \right)}}{5}

        So, the result is: cos5(x)5\frac{\cos^{5}{\left(x \right)}}{5}

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        u2du\int u^{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          So, the result is: u33- \frac{u^{3}}{3}

        Now substitute uu back in:

        cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

      The result is: cos5(x)5cos3(x)3\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}

  3. Add the constant of integration:

    cos5(x)5cos3(x)3+constant\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}+ \mathrm{constant}


The answer is:

cos5(x)5cos3(x)3+constant\frac{\cos^{5}{\left(x \right)}}{5} - \frac{\cos^{3}{\left(x \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                          
 |                             3         5   
 |    3       2             cos (x)   cos (x)
 | sin (x)*cos (x) dx = C - ------- + -------
 |                             3         5   
/                                            
3cos5x5cos3x15{{3\,\cos ^5x-5\,\cos ^3x}\over{15}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.5-0.5
The answer [src]
        3         5   
2    cos (1)   cos (1)
-- - ------- + -------
15      3         5   
3cos515cos3115+215{{3\,\cos ^51-5\,\cos ^31}\over{15}}+{{2}\over{15}}
=
=
        3         5   
2    cos (1)   cos (1)
-- - ------- + -------
15      3         5   
cos3(1)3+cos5(1)5+215- \frac{\cos^{3}{\left(1 \right)}}{3} + \frac{\cos^{5}{\left(1 \right)}}{5} + \frac{2}{15}
Numerical answer [src]
0.0899661660972821
0.0899661660972821
The graph
Integral of sin³xcos²x dx

    Use the examples entering the upper and lower limits of integration.