Mister Exam

Other calculators

Integral of (sin(2x-1))*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  sin(2*x - 1) dx
 |                 
/                  
0                  
01sin(2x1)dx\int\limits_{0}^{1} \sin{\left(2 x - 1 \right)}\, dx
Integral(sin(2*x - 1), (x, 0, 1))
Detail solution
  1. Let u=2x1u = 2 x - 1.

    Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

    sin(u)2du\int \frac{\sin{\left(u \right)}}{2}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du2\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

    Now substitute uu back in:

    cos(2x1)2- \frac{\cos{\left(2 x - 1 \right)}}{2}

  2. Now simplify:

    cos(2x1)2- \frac{\cos{\left(2 x - 1 \right)}}{2}

  3. Add the constant of integration:

    cos(2x1)2+constant- \frac{\cos{\left(2 x - 1 \right)}}{2}+ \mathrm{constant}


The answer is:

cos(2x1)2+constant- \frac{\cos{\left(2 x - 1 \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                       cos(2*x - 1)
 | sin(2*x - 1) dx = C - ------------
 |                            2      
/                                    
sin(2x1)dx=Ccos(2x1)2\int \sin{\left(2 x - 1 \right)}\, dx = C - \frac{\cos{\left(2 x - 1 \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
1.28230080812608e-23
1.28230080812608e-23

    Use the examples entering the upper and lower limits of integration.