Integral of (sin(2x-1))*dx dx
The solution
Detail solution
-
Let u=2x−1.
Then let du=2dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x−1)
-
Now simplify:
−2cos(2x−1)
-
Add the constant of integration:
−2cos(2x−1)+constant
The answer is:
−2cos(2x−1)+constant
The answer (Indefinite)
[src]
/
| cos(2*x - 1)
| sin(2*x - 1) dx = C - ------------
| 2
/
∫sin(2x−1)dx=C−2cos(2x−1)
The graph
Use the examples entering the upper and lower limits of integration.