Mister Exam

Integral of sin(2x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  sin(2*x)*1 dx
 |               
/                
0                
01sin(2x)1dx\int\limits_{0}^{1} \sin{\left(2 x \right)} 1\, dx
Integral(sin(2*x)*1, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)2du=sin(u)du2\int \frac{\sin{\left(u \right)}}{2}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

      Now substitute uu back in:

      cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

    Method #2

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(x)cos(x)dx=2sin(x)cos(x)dx\int 2 \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

        udu\int u\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u)du=udu\int \left(- u\right)\, du = - \int u\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            udu=u22\int u\, du = \frac{u^{2}}{2}

          So, the result is: u22- \frac{u^{2}}{2}

        Now substitute uu back in:

        cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

      So, the result is: cos2(x)- \cos^{2}{\left(x \right)}

  2. Add the constant of integration:

    cos(2x)2+constant- \frac{\cos{\left(2 x \right)}}{2}+ \mathrm{constant}


The answer is:

cos(2x)2+constant- \frac{\cos{\left(2 x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                     cos(2*x)
 | sin(2*x)*1 dx = C - --------
 |                        2    
/                              
cos(2x)2-{{\cos \left(2\,x\right)}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
1   cos(2)
- - ------
2     2   
12cos22{{1}\over{2}}-{{\cos 2}\over{2}}
=
=
1   cos(2)
- - ------
2     2   
12cos(2)2\frac{1}{2} - \frac{\cos{\left(2 \right)}}{2}
Numerical answer [src]
0.708073418273571
0.708073418273571
The graph
Integral of sin(2x)dx dx

    Use the examples entering the upper and lower limits of integration.