Integral of sin2xdx/sin^4xdx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin4(x)2sin(x)cos(x)dx=2∫sin4(x)sin(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u31du
-
The integral of un is n+1un+1 when n=−1:
∫u31du=−2u21
Now substitute u back in:
−2sin2(x)1
So, the result is: −sin2(x)1
Method #2
-
Rewrite the integrand:
sin(2x)1⋅sin4(x)11=sin3(x)2cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin3(x)2cos(x)dx=2∫sin3(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u31du
-
The integral of un is n+1un+1 when n=−1:
∫u31du=−2u21
Now substitute u back in:
−2sin2(x)1
So, the result is: −sin2(x)1
-
Add the constant of integration:
−sin2(x)1+constant
The answer is:
−sin2(x)1+constant
The answer (Indefinite)
[src]
/
|
| 1 1
| sin(2*x)*1*-------*1 dx = C - -------
| 4 2
| sin (x) sin (x)
|
/
∫sin(2x)1⋅sin4(x)11dx=C−sin2(x)1
The graph
Use the examples entering the upper and lower limits of integration.