Mister Exam

Other calculators


sin2xdx/sin^4xdx

Integral of sin2xdx/sin^4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |                1        
 |  sin(2*x)*1*-------*1 dx
 |                4        
 |             sin (x)     
 |                         
/                          
0                          
01sin(2x)11sin4(x)1dx\int\limits_{0}^{1} \sin{\left(2 x \right)} 1 \cdot \frac{1}{\sin^{4}{\left(x \right)}} 1\, dx
Integral(sin(2*x)*1*1/sin(x)^4, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      2sin(x)cos(x)sin4(x)dx=2sin(x)cos(x)sin4(x)dx\int \frac{2 \sin{\left(x \right)} \cos{\left(x \right)}}{\sin^{4}{\left(x \right)}}\, dx = 2 \int \frac{\sin{\left(x \right)} \cos{\left(x \right)}}{\sin^{4}{\left(x \right)}}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        1u3du\int \frac{1}{u^{3}}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          1u3du=12u2\int \frac{1}{u^{3}}\, du = - \frac{1}{2 u^{2}}

        Now substitute uu back in:

        12sin2(x)- \frac{1}{2 \sin^{2}{\left(x \right)}}

      So, the result is: 1sin2(x)- \frac{1}{\sin^{2}{\left(x \right)}}

    Method #2

    1. Rewrite the integrand:

      sin(2x)11sin4(x)1=2cos(x)sin3(x)\sin{\left(2 x \right)} 1 \cdot \frac{1}{\sin^{4}{\left(x \right)}} 1 = \frac{2 \cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}

    2. The integral of a constant times a function is the constant times the integral of the function:

      2cos(x)sin3(x)dx=2cos(x)sin3(x)dx\int \frac{2 \cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}\, dx = 2 \int \frac{\cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        1u3du\int \frac{1}{u^{3}}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          1u3du=12u2\int \frac{1}{u^{3}}\, du = - \frac{1}{2 u^{2}}

        Now substitute uu back in:

        12sin2(x)- \frac{1}{2 \sin^{2}{\left(x \right)}}

      So, the result is: 1sin2(x)- \frac{1}{\sin^{2}{\left(x \right)}}

  2. Add the constant of integration:

    1sin2(x)+constant- \frac{1}{\sin^{2}{\left(x \right)}}+ \mathrm{constant}


The answer is:

1sin2(x)+constant- \frac{1}{\sin^{2}{\left(x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                      
 |               1                  1   
 | sin(2*x)*1*-------*1 dx = C - -------
 |               4                  2   
 |            sin (x)            sin (x)
 |                                      
/                                       
sin(2x)11sin4(x)1dx=C1sin2(x)\int \sin{\left(2 x \right)} 1 \cdot \frac{1}{\sin^{4}{\left(x \right)}} 1\, dx = C - \frac{1}{\sin^{2}{\left(x \right)}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902000000000000-1000000000000
The answer [src]
oo
\infty
=
=
oo
\infty
Numerical answer [src]
1.83073007580698e+38
1.83073007580698e+38
The graph
Integral of sin2xdx/sin^4xdx dx

    Use the examples entering the upper and lower limits of integration.