Mister Exam

Integral of sin(2x/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3*pi           
   /            
  |             
  |     /2*x\   
  |  sin|---| dx
  |     \ 3 /   
  |             
 /              
 0              
$$\int\limits_{0}^{3 \pi} \sin{\left(\frac{2 x}{3} \right)}\, dx$$
Integral(sin((2*x)/3), (x, 0, 3*pi))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       /2*x\
 |                   3*cos|---|
 |    /2*x\               \ 3 /
 | sin|---| dx = C - ----------
 |    \ 3 /              2     
 |                             
/                              
$$\int \sin{\left(\frac{2 x}{3} \right)}\, dx = C - \frac{3 \cos{\left(\frac{2 x}{3} \right)}}{2}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
6.11036069524454e-22
6.11036069524454e-22

    Use the examples entering the upper and lower limits of integration.