Mister Exam

Other calculators

Integral of sin(2x)/(sqrt(1+cos(2x))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |      sin(2*x)       
 |  ---------------- dx
 |    ______________   
 |  \/ 1 + cos(2*x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)} + 1}}\, dx$$
Integral(sin(2*x)/sqrt(1 + cos(2*x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                           
 |     sin(2*x)                ______________
 | ---------------- dx = C - \/ 1 + cos(2*x) 
 |   ______________                          
 | \/ 1 + cos(2*x)                           
 |                                           
/                                            
$$\int \frac{\sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)} + 1}}\, dx = C - \sqrt{\cos{\left(2 x \right)} + 1}$$
The graph
The answer [src]
  ___     ____________
\/ 2  - \/ 1 + cos(2) 
$$- \sqrt{\cos{\left(2 \right)} + 1} + \sqrt{2}$$
=
=
  ___     ____________
\/ 2  - \/ 1 + cos(2) 
$$- \sqrt{\cos{\left(2 \right)} + 1} + \sqrt{2}$$
sqrt(2) - sqrt(1 + cos(2))
Numerical answer [src]
0.650110713632916
0.650110713632916

    Use the examples entering the upper and lower limits of integration.