1 / | | sin(2*x) | ---------------- dx | _____________ | / 2 | \/ 1 + cos (x) | / 0
Integral(sin(2*x)/sqrt(1 + cos(x)^2), (x, 0, 1))
There are multiple ways to do this integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ | _____________ | sin(2*x) / 2 | ---------------- dx = C - 2*\/ 1 + cos (x) | _____________ | / 2 | \/ 1 + cos (x) | /
_____________
/ 2 ___
- 2*\/ 1 + cos (1) + 2*\/ 2
=
_____________
/ 2 ___
- 2*\/ 1 + cos (1) + 2*\/ 2
-2*sqrt(1 + cos(1)^2) + 2*sqrt(2)
Use the examples entering the upper and lower limits of integration.