Mister Exam

Other calculators

Integral of sin2x/(sqrt(1+cos^2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |      sin(2*x)       
 |  ---------------- dx
 |     _____________   
 |    /        2       
 |  \/  1 + cos (x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\sin{\left(2 x \right)}}{\sqrt{\cos^{2}{\left(x \right)} + 1}}\, dx$$
Integral(sin(2*x)/sqrt(1 + cos(x)^2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                _____________
 |     sin(2*x)                  /        2    
 | ---------------- dx = C - 2*\/  1 + cos (x) 
 |    _____________                            
 |   /        2                                
 | \/  1 + cos (x)                             
 |                                             
/                                              
$$\int \frac{\sin{\left(2 x \right)}}{\sqrt{\cos^{2}{\left(x \right)} + 1}}\, dx = C - 2 \sqrt{\cos^{2}{\left(x \right)} + 1}$$
The graph
The answer [src]
       _____________          
      /        2           ___
- 2*\/  1 + cos (1)  + 2*\/ 2 
$$- 2 \sqrt{\cos^{2}{\left(1 \right)} + 1} + 2 \sqrt{2}$$
=
=
       _____________          
      /        2           ___
- 2*\/  1 + cos (1)  + 2*\/ 2 
$$- 2 \sqrt{\cos^{2}{\left(1 \right)} + 1} + 2 \sqrt{2}$$
-2*sqrt(1 + cos(1)^2) + 2*sqrt(2)
Numerical answer [src]
0.555168158656819
0.555168158656819

    Use the examples entering the upper and lower limits of integration.