Mister Exam

Other calculators

Integral of sin²(2x)cos²x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |     2         2      
 |  sin (2*x)*cos (x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin^{2}{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx$$
Integral(sin(2*x)^2*cos(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                   
 |                                              3     
 |    2         2             sin(4*x)   x   sin (2*x)
 | sin (2*x)*cos (x) dx = C - -------- + - + ---------
 |                               16      4       12   
/                                                     
$$\int \sin^{2}{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx = C + \frac{x}{4} + \frac{\sin^{3}{\left(2 x \right)}}{12} - \frac{\sin{\left(4 x \right)}}{16}$$
The graph
The answer [src]
   2       2         2       2         2       2         2       2           2                       2                       2                       2                 
cos (1)*cos (2)   cos (1)*sin (2)   cos (2)*sin (1)   sin (1)*sin (2)   7*cos (1)*cos(2)*sin(2)   cos (2)*cos(1)*sin(1)   sin (2)*cos(1)*sin(1)   sin (1)*cos(2)*sin(2)
--------------- + --------------- + --------------- + --------------- - ----------------------- + --------------------- + --------------------- + ---------------------
       4                 4                 4                 4                     24                       3                       6                       24         
$$\frac{\sin^{2}{\left(1 \right)} \sin{\left(2 \right)} \cos{\left(2 \right)}}{24} + \frac{\cos^{2}{\left(1 \right)} \cos^{2}{\left(2 \right)}}{4} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)} \cos^{2}{\left(2 \right)}}{3} + \frac{\sin^{2}{\left(1 \right)} \cos^{2}{\left(2 \right)}}{4} - \frac{7 \sin{\left(2 \right)} \cos^{2}{\left(1 \right)} \cos{\left(2 \right)}}{24} + \frac{\sin^{2}{\left(2 \right)} \cos^{2}{\left(1 \right)}}{4} + \frac{\sin{\left(1 \right)} \sin^{2}{\left(2 \right)} \cos{\left(1 \right)}}{6} + \frac{\sin^{2}{\left(1 \right)} \sin^{2}{\left(2 \right)}}{4}$$
=
=
   2       2         2       2         2       2         2       2           2                       2                       2                       2                 
cos (1)*cos (2)   cos (1)*sin (2)   cos (2)*sin (1)   sin (1)*sin (2)   7*cos (1)*cos(2)*sin(2)   cos (2)*cos(1)*sin(1)   sin (2)*cos(1)*sin(1)   sin (1)*cos(2)*sin(2)
--------------- + --------------- + --------------- + --------------- - ----------------------- + --------------------- + --------------------- + ---------------------
       4                 4                 4                 4                     24                       3                       6                       24         
$$\frac{\sin^{2}{\left(1 \right)} \sin{\left(2 \right)} \cos{\left(2 \right)}}{24} + \frac{\cos^{2}{\left(1 \right)} \cos^{2}{\left(2 \right)}}{4} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)} \cos^{2}{\left(2 \right)}}{3} + \frac{\sin^{2}{\left(1 \right)} \cos^{2}{\left(2 \right)}}{4} - \frac{7 \sin{\left(2 \right)} \cos^{2}{\left(1 \right)} \cos{\left(2 \right)}}{24} + \frac{\sin^{2}{\left(2 \right)} \cos^{2}{\left(1 \right)}}{4} + \frac{\sin{\left(1 \right)} \sin^{2}{\left(2 \right)} \cos{\left(1 \right)}}{6} + \frac{\sin^{2}{\left(1 \right)} \sin^{2}{\left(2 \right)}}{4}$$
cos(1)^2*cos(2)^2/4 + cos(1)^2*sin(2)^2/4 + cos(2)^2*sin(1)^2/4 + sin(1)^2*sin(2)^2/4 - 7*cos(1)^2*cos(2)*sin(2)/24 + cos(2)^2*cos(1)*sin(1)/3 + sin(2)^2*cos(1)*sin(1)/6 + sin(1)^2*cos(2)*sin(2)/24
Numerical answer [src]
0.359952401345828
0.359952401345828

    Use the examples entering the upper and lower limits of integration.