Integral of sin²(2x)cos²x dx
The solution
The answer (Indefinite)
[src]
/
| 3
| 2 2 sin(4*x) x sin (2*x)
| sin (2*x)*cos (x) dx = C - -------- + - + ---------
| 16 4 12
/
$$\int \sin^{2}{\left(2 x \right)} \cos^{2}{\left(x \right)}\, dx = C + \frac{x}{4} + \frac{\sin^{3}{\left(2 x \right)}}{12} - \frac{\sin{\left(4 x \right)}}{16}$$
2 2 2 2 2 2 2 2 2 2 2 2
cos (1)*cos (2) cos (1)*sin (2) cos (2)*sin (1) sin (1)*sin (2) 7*cos (1)*cos(2)*sin(2) cos (2)*cos(1)*sin(1) sin (2)*cos(1)*sin(1) sin (1)*cos(2)*sin(2)
--------------- + --------------- + --------------- + --------------- - ----------------------- + --------------------- + --------------------- + ---------------------
4 4 4 4 24 3 6 24
$$\frac{\sin^{2}{\left(1 \right)} \sin{\left(2 \right)} \cos{\left(2 \right)}}{24} + \frac{\cos^{2}{\left(1 \right)} \cos^{2}{\left(2 \right)}}{4} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)} \cos^{2}{\left(2 \right)}}{3} + \frac{\sin^{2}{\left(1 \right)} \cos^{2}{\left(2 \right)}}{4} - \frac{7 \sin{\left(2 \right)} \cos^{2}{\left(1 \right)} \cos{\left(2 \right)}}{24} + \frac{\sin^{2}{\left(2 \right)} \cos^{2}{\left(1 \right)}}{4} + \frac{\sin{\left(1 \right)} \sin^{2}{\left(2 \right)} \cos{\left(1 \right)}}{6} + \frac{\sin^{2}{\left(1 \right)} \sin^{2}{\left(2 \right)}}{4}$$
=
2 2 2 2 2 2 2 2 2 2 2 2
cos (1)*cos (2) cos (1)*sin (2) cos (2)*sin (1) sin (1)*sin (2) 7*cos (1)*cos(2)*sin(2) cos (2)*cos(1)*sin(1) sin (2)*cos(1)*sin(1) sin (1)*cos(2)*sin(2)
--------------- + --------------- + --------------- + --------------- - ----------------------- + --------------------- + --------------------- + ---------------------
4 4 4 4 24 3 6 24
$$\frac{\sin^{2}{\left(1 \right)} \sin{\left(2 \right)} \cos{\left(2 \right)}}{24} + \frac{\cos^{2}{\left(1 \right)} \cos^{2}{\left(2 \right)}}{4} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)} \cos^{2}{\left(2 \right)}}{3} + \frac{\sin^{2}{\left(1 \right)} \cos^{2}{\left(2 \right)}}{4} - \frac{7 \sin{\left(2 \right)} \cos^{2}{\left(1 \right)} \cos{\left(2 \right)}}{24} + \frac{\sin^{2}{\left(2 \right)} \cos^{2}{\left(1 \right)}}{4} + \frac{\sin{\left(1 \right)} \sin^{2}{\left(2 \right)} \cos{\left(1 \right)}}{6} + \frac{\sin^{2}{\left(1 \right)} \sin^{2}{\left(2 \right)}}{4}$$
cos(1)^2*cos(2)^2/4 + cos(1)^2*sin(2)^2/4 + cos(2)^2*sin(1)^2/4 + sin(1)^2*sin(2)^2/4 - 7*cos(1)^2*cos(2)*sin(2)/24 + cos(2)^2*cos(1)*sin(1)/3 + sin(2)^2*cos(1)*sin(1)/6 + sin(1)^2*cos(2)*sin(2)/24
Use the examples entering the upper and lower limits of integration.