Mister Exam

Integral of shx^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      2      
 |  sinh (x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} \sinh^{2}{\left(x \right)}\, dx$$
Integral(sinh(x)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                           
 |                         2                              2   
 |     2             x*sinh (x)   cosh(x)*sinh(x)   x*cosh (x)
 | sinh (x) dx = C + ---------- + --------------- - ----------
 |                       2               2              2     
/                                                             
$$\int \sinh^{2}{\left(x \right)}\, dx = C + \frac{x \sinh^{2}{\left(x \right)}}{2} - \frac{x \cosh^{2}{\left(x \right)}}{2} + \frac{\sinh{\left(x \right)} \cosh{\left(x \right)}}{2}$$
The graph
The answer [src]
    2          2                     
sinh (1)   cosh (1)   cosh(1)*sinh(1)
-------- - -------- + ---------------
   2          2              2       
$$- \frac{\cosh^{2}{\left(1 \right)}}{2} + \frac{\sinh^{2}{\left(1 \right)}}{2} + \frac{\sinh{\left(1 \right)} \cosh{\left(1 \right)}}{2}$$
=
=
    2          2                     
sinh (1)   cosh (1)   cosh(1)*sinh(1)
-------- - -------- + ---------------
   2          2              2       
$$- \frac{\cosh^{2}{\left(1 \right)}}{2} + \frac{\sinh^{2}{\left(1 \right)}}{2} + \frac{\sinh{\left(1 \right)} \cosh{\left(1 \right)}}{2}$$
sinh(1)^2/2 - cosh(1)^2/2 + cosh(1)*sinh(1)/2
Numerical answer [src]
0.406715101961755
0.406715101961755

    Use the examples entering the upper and lower limits of integration.