Mister Exam

Other calculators


sh(x)^2*ch(x)^3

Integral of sh(x)^2*ch(x)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |      2        3      
 |  sinh (x)*cosh (x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sinh^{2}{\left(x \right)} \cosh^{3}{\left(x \right)}\, dx$$
Integral(sinh(x)^2*cosh(x)^3, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                         
 |                                  5          2        3   
 |     2        3             2*sinh (x)   cosh (x)*sinh (x)
 | sinh (x)*cosh (x) dx = C - ---------- + -----------------
 |                                15               3        
/                                                           
$$\int \sinh^{2}{\left(x \right)} \cosh^{3}{\left(x \right)}\, dx = C - \frac{2 \sinh^{5}{\left(x \right)}}{15} + \frac{\sinh^{3}{\left(x \right)} \cosh^{2}{\left(x \right)}}{3}$$
The graph
The answer [src]
        5          2        3   
  2*sinh (1)   cosh (1)*sinh (1)
- ---------- + -----------------
      15               3        
$$- \frac{2 \sinh^{5}{\left(1 \right)}}{15} + \frac{\sinh^{3}{\left(1 \right)} \cosh^{2}{\left(1 \right)}}{3}$$
=
=
        5          2        3   
  2*sinh (1)   cosh (1)*sinh (1)
- ---------- + -----------------
      15               3        
$$- \frac{2 \sinh^{5}{\left(1 \right)}}{15} + \frac{\sinh^{3}{\left(1 \right)} \cosh^{2}{\left(1 \right)}}{3}$$
Numerical answer [src]
0.989345710671257
0.989345710671257
The graph
Integral of sh(x)^2*ch(x)^3 dx

    Use the examples entering the upper and lower limits of integration.