Mister Exam

Other calculators

Integral of sh(x-y)shx/(chx)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  sinh(x - y)*sinh(x)   
 |  ------------------- dx
 |            2           
 |        cosh (x)        
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{\sinh{\left(x \right)} \sinh{\left(x - y \right)}}{\cosh^{2}{\left(x \right)}}\, dx$$
Integral(sinh(x - y)*sinh(x)/(cosh(x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                               /                      
 |                               |                       
 | sinh(x - y)*sinh(x)           | sinh(x)*sinh(x - y)   
 | ------------------- dx = C +  | ------------------- dx
 |           2                   |           2           
 |       cosh (x)                |       cosh (x)        
 |                               |                       
/                               /                        
$$-{{e^{2\,y}+1}\over{e^{y-2\,x}+e^{y}}}-{{\log \left(e^ {- 2\,x }+1 \right)\,e^ {- y }\,\left(e^{2\,y}-1\right)}\over{2}}+x\,e^ {- y }$$
The answer [src]
  1                       
  /                       
 |                        
 |  sinh(x)*sinh(x - y)   
 |  ------------------- dx
 |            2           
 |        cosh (x)        
 |                        
/                         
0                         
$$-{{\left(e^2+1\right)\,\log \left({{e^ {- 1 }\,\left(e^2+1\right) }\over{2}}\right)\,\sinh y-2\,\cosh y}\over{e^2+1}}$$
=
=
  1                       
  /                       
 |                        
 |  sinh(x)*sinh(x - y)   
 |  ------------------- dx
 |            2           
 |        cosh (x)        
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{\sinh{\left(x \right)} \sinh{\left(x - y \right)}}{\cosh^{2}{\left(x \right)}}\, dx$$

    Use the examples entering the upper and lower limits of integration.