Mister Exam

Other calculators

Integral of 7/8x²+1/5x-20 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /   2         \   
 |  |7*x    x     |   
 |  |---- + - - 20| dx
 |  \ 8     5     /   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(\left(\frac{7 x^{2}}{8} + \frac{x}{5}\right) - 20\right)\, dx$$
Integral(7*x^2/8 + x/5 - 20, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 | /   2         \                  2      3
 | |7*x    x     |                 x    7*x 
 | |---- + - - 20| dx = C - 20*x + -- + ----
 | \ 8     5     /                 10    24 
 |                                          
/                                           
$$\int \left(\left(\frac{7 x^{2}}{8} + \frac{x}{5}\right) - 20\right)\, dx = C + \frac{7 x^{3}}{24} + \frac{x^{2}}{10} - 20 x$$
The graph
The answer [src]
-2353 
------
 120  
$$- \frac{2353}{120}$$
=
=
-2353 
------
 120  
$$- \frac{2353}{120}$$
-2353/120
Numerical answer [src]
-19.6083333333333
-19.6083333333333

    Use the examples entering the upper and lower limits of integration.