Mister Exam

Integral of sen^6x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     6      
 |  sin (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \sin^{6}{\left(x \right)}\, dx$$
Integral(sin(x)^6, (x, 0, 1))
The graph
The answer [src]
                            3                5          
5    5*cos(1)*sin(1)   5*sin (1)*cos(1)   sin (1)*cos(1)
-- - --------------- - ---------------- - --------------
16          16                24                6       
$$- \frac{5 \sin{\left(1 \right)} \cos{\left(1 \right)}}{16} - \frac{5 \sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{24} - \frac{\sin^{5}{\left(1 \right)} \cos{\left(1 \right)}}{6} + \frac{5}{16}$$
=
=
                            3                5          
5    5*cos(1)*sin(1)   5*sin (1)*cos(1)   sin (1)*cos(1)
-- - --------------- - ---------------- - --------------
16          16                24                6       
$$- \frac{5 \sin{\left(1 \right)} \cos{\left(1 \right)}}{16} - \frac{5 \sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{24} - \frac{\sin^{5}{\left(1 \right)} \cos{\left(1 \right)}}{6} + \frac{5}{16}$$
5/16 - 5*cos(1)*sin(1)/16 - 5*sin(1)^3*cos(1)/24 - sin(1)^5*cos(1)/6
Numerical answer [src]
0.0653635876732911
0.0653635876732911
The graph
Integral of sen^6x dx

    Use the examples entering the upper and lower limits of integration.