Mister Exam

Other calculators


sec^4(x)

Integral of sec^4(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     4      
 |  sec (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \sec^{4}{\left(x \right)}\, dx$$
Integral(sec(x)^4, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                     3            
 |    4             tan (x)         
 | sec (x) dx = C + ------- + tan(x)
 |                     3            
/                                   
$${{\tan ^3x}\over{3}}+\tan x$$
The graph
The answer [src]
  sin(1)    2*sin(1)
--------- + --------
     3      3*cos(1)
3*cos (1)           
$${{\tan ^31}\over{3}}+\tan 1$$
=
=
  sin(1)    2*sin(1)
--------- + --------
     3      3*cos(1)
3*cos (1)           
$$\frac{2 \sin{\left(1 \right)}}{3 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}}$$
Numerical answer [src]
2.81658164059915
2.81658164059915
The graph
Integral of sec^4(x) dx

    Use the examples entering the upper and lower limits of integration.