Mister Exam

Other calculators


sec^2xtanx

Integral of sec^2xtanx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     2             
 |  sec (x)*tan(x) dx
 |                   
/                    
0                    
01tan(x)sec2(x)dx\int\limits_{0}^{1} \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx
Integral(sec(x)^2*tan(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=sec2(x)u = \sec^{2}{\left(x \right)}.

      Then let du=2tan(x)sec2(x)dxdu = 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)} dx and substitute du2\frac{du}{2}:

      14du\int \frac{1}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        12du=1du2\int \frac{1}{2}\, du = \frac{\int 1\, du}{2}

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: u2\frac{u}{2}

      Now substitute uu back in:

      sec2(x)2\frac{\sec^{2}{\left(x \right)}}{2}

    Method #2

    1. Let u=sec(x)u = \sec{\left(x \right)}.

      Then let du=tan(x)sec(x)dxdu = \tan{\left(x \right)} \sec{\left(x \right)} dx and substitute dudu:

      udu\int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      Now substitute uu back in:

      sec2(x)2\frac{\sec^{2}{\left(x \right)}}{2}

    Method #3

    1. Let u=tan(x)u = \tan{\left(x \right)}.

      Then let du=(tan2(x)+1)dxdu = \left(\tan^{2}{\left(x \right)} + 1\right) dx and substitute dudu:

      udu\int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      Now substitute uu back in:

      tan2(x)2\frac{\tan^{2}{\left(x \right)}}{2}

  2. Add the constant of integration:

    sec2(x)2+constant\frac{\sec^{2}{\left(x \right)}}{2}+ \mathrm{constant}


The answer is:

sec2(x)2+constant\frac{\sec^{2}{\left(x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                            2   
 |    2                    sec (x)
 | sec (x)*tan(x) dx = C + -------
 |                            2   
/                                 
tan2x2{{\tan ^2x}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
  1       1    
- - + ---------
  2        2   
      2*cos (1)
12sin21212-{{1}\over{2\,\sin ^21-2}}-{{1}\over{2}}
=
=
  1       1    
- - + ---------
  2        2   
      2*cos (1)
12+12cos2(1)- \frac{1}{2} + \frac{1}{2 \cos^{2}{\left(1 \right)}}
Numerical answer [src]
1.21275941040738
1.21275941040738
The graph
Integral of sec^2xtanx dx

    Use the examples entering the upper and lower limits of integration.