Mister Exam

Other calculators

Integral of 1/((x-1)*sqrt(x^2-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |             ________   
 |            /  2        
 |  (x - 1)*\/  x  - 1    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{\left(x - 1\right) \sqrt{x^{2} - 1}}\, dx$$
Integral(1/((x - 1)*sqrt(x^2 - 1)), (x, 0, 1))
The answer (Indefinite) [src]
  /                               /                                
 |                               |                                 
 |          1                    |               1                 
 | ------------------- dx = C +  | ----------------------------- dx
 |            ________           |   __________________            
 |           /  2                | \/ (1 + x)*(-1 + x) *(-1 + x)   
 | (x - 1)*\/  x  - 1            |                                 
 |                              /                                  
/                                                                  
$$\int \frac{1}{\left(x - 1\right) \sqrt{x^{2} - 1}}\, dx = C + \int \frac{1}{\sqrt{\left(x - 1\right) \left(x + 1\right)} \left(x - 1\right)}\, dx$$
The answer [src]
  1                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |    _______         3/2   
 |  \/ 1 + x *(-1 + x)      
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \frac{1}{\left(x - 1\right)^{\frac{3}{2}} \sqrt{x + 1}}\, dx$$
=
=
  1                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |    _______         3/2   
 |  \/ 1 + x *(-1 + x)      
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \frac{1}{\left(x - 1\right)^{\frac{3}{2}} \sqrt{x + 1}}\, dx$$
Integral(1/(sqrt(1 + x)*(-1 + x)^(3/2)), (x, 0, 1))
Numerical answer [src]
(0.0 + 5279716355.02023j)
(0.0 + 5279716355.02023j)

    Use the examples entering the upper and lower limits of integration.