Mister Exam

Integral of sec²xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  sec (x)*1 dx
 |              
/               
0               
$$\int\limits_{0}^{1} \sec^{2}{\left(x \right)} 1\, dx$$
Integral(sec(x)^2*1, (x, 0, 1))
The answer (Indefinite) [src]
  /                         
 |                          
 |    2               sin(x)
 | sec (x)*1 dx = C + ------
 |                    cos(x)
/                           
$$\tan x$$
The graph
The answer [src]
sin(1)
------
cos(1)
$$\tan 1$$
=
=
sin(1)
------
cos(1)
$$\frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
Numerical answer [src]
1.5574077246549
1.5574077246549
The graph
Integral of sec²xdx dx

    Use the examples entering the upper and lower limits of integration.