Integral of (5cscxcotx-4sec²x)dx dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫cot(x)5csc(x)dx=−5∫(−cot(x)csc(x))dx
-
The integral of cosecant times cotangent is cosecant:
∫(−cot(x)csc(x))dx=csc(x)
So, the result is: −5csc(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sec2(x))dx=−4∫sec2(x)dx
-
∫sec2(x)dx=tan(x)
So, the result is: −4tan(x)
The result is: −4tan(x)−5csc(x)
-
Now simplify:
−4tan(x)−sin(x)5
-
Add the constant of integration:
−4tan(x)−sin(x)5+constant
The answer is:
−4tan(x)−sin(x)5+constant
The answer (Indefinite)
[src]
/
|
| / 2 \
| \5*csc(x)*cot(x) - 4*sec (x)/ dx = C - 5*csc(x) - 4*tan(x)
|
/
∫(cot(x)5csc(x)−4sec2(x))dx=C−4tan(x)−5csc(x)
The graph
Use the examples entering the upper and lower limits of integration.