Mister Exam

Other calculators

Integral of (5cscxcotx-4sec²x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                 
  /                                 
 |                                  
 |  /                       2   \   
 |  \5*csc(x)*cot(x) - 4*sec (x)/ dx
 |                                  
/                                   
0                                   
$$\int\limits_{0}^{1} \left(\cot{\left(x \right)} 5 \csc{\left(x \right)} - 4 \sec^{2}{\left(x \right)}\right)\, dx$$
Integral((5*csc(x))*cot(x) - 4*sec(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosecant times cotangent is cosecant:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                          
 |                                                           
 | /                       2   \                             
 | \5*csc(x)*cot(x) - 4*sec (x)/ dx = C - 5*csc(x) - 4*tan(x)
 |                                                           
/                                                            
$$\int \left(\cot{\left(x \right)} 5 \csc{\left(x \right)} - 4 \sec^{2}{\left(x \right)}\right)\, dx = C - 4 \tan{\left(x \right)} - 5 \csc{\left(x \right)}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
6.89661838974298e+19
6.89661838974298e+19

    Use the examples entering the upper and lower limits of integration.