Mister Exam

Other calculators

Integral of (5cscxcotx-4sec²x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                 
  /                                 
 |                                  
 |  /                       2   \   
 |  \5*csc(x)*cot(x) - 4*sec (x)/ dx
 |                                  
/                                   
0                                   
01(cot(x)5csc(x)4sec2(x))dx\int\limits_{0}^{1} \left(\cot{\left(x \right)} 5 \csc{\left(x \right)} - 4 \sec^{2}{\left(x \right)}\right)\, dx
Integral((5*csc(x))*cot(x) - 4*sec(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      cot(x)5csc(x)dx=5(cot(x)csc(x))dx\int \cot{\left(x \right)} 5 \csc{\left(x \right)}\, dx = - 5 \int \left(- \cot{\left(x \right)} \csc{\left(x \right)}\right)\, dx

      1. The integral of cosecant times cotangent is cosecant:

        (cot(x)csc(x))dx=csc(x)\int \left(- \cot{\left(x \right)} \csc{\left(x \right)}\right)\, dx = \csc{\left(x \right)}

      So, the result is: 5csc(x)- 5 \csc{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (4sec2(x))dx=4sec2(x)dx\int \left(- 4 \sec^{2}{\left(x \right)}\right)\, dx = - 4 \int \sec^{2}{\left(x \right)}\, dx

      1. sec2(x)dx=tan(x)\int \sec^{2}{\left(x \right)}\, dx = \tan{\left(x \right)}

      So, the result is: 4tan(x)- 4 \tan{\left(x \right)}

    The result is: 4tan(x)5csc(x)- 4 \tan{\left(x \right)} - 5 \csc{\left(x \right)}

  2. Now simplify:

    4tan(x)5sin(x)- 4 \tan{\left(x \right)} - \frac{5}{\sin{\left(x \right)}}

  3. Add the constant of integration:

    4tan(x)5sin(x)+constant- 4 \tan{\left(x \right)} - \frac{5}{\sin{\left(x \right)}}+ \mathrm{constant}


The answer is:

4tan(x)5sin(x)+constant- 4 \tan{\left(x \right)} - \frac{5}{\sin{\left(x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                          
 |                                                           
 | /                       2   \                             
 | \5*csc(x)*cot(x) - 4*sec (x)/ dx = C - 5*csc(x) - 4*tan(x)
 |                                                           
/                                                            
(cot(x)5csc(x)4sec2(x))dx=C4tan(x)5csc(x)\int \left(\cot{\left(x \right)} 5 \csc{\left(x \right)} - 4 \sec^{2}{\left(x \right)}\right)\, dx = C - 4 \tan{\left(x \right)} - 5 \csc{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-500000000500000000
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
6.89661838974298e+19
6.89661838974298e+19

    Use the examples entering the upper and lower limits of integration.