Mister Exam

Other calculators


r*cosr^2

Integral of r*cosr^2 dr

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___   ____            
 \/ 2 *\/ pi             
 ------------            
      2                  
       /                 
      |                  
      |           2      
      |      r*cos (r) dr
      |                  
     /                   
  ___   ____             
\/ 3 *\/ pi              
------------             
     3                   
$$\int\limits_{\frac{\sqrt{3} \sqrt{\pi}}{3}}^{\frac{\sqrt{2} \sqrt{\pi}}{2}} r \cos^{2}{\left(r \right)}\, dr$$
Integral(r*cos(r)^2, (r, sqrt(3)*sqrt(pi)/3, sqrt(2)*sqrt(pi)/2))
The answer (Indefinite) [src]
  /                                                                      
 |                       2       2    2       2    2                     
 |      2             sin (r)   r *cos (r)   r *sin (r)   r*cos(r)*sin(r)
 | r*cos (r) dr = C - ------- + ---------- + ---------- + ---------------
 |                       4          4            4               2       
/                                                                        
$$\int r \cos^{2}{\left(r \right)}\, dr = C + \frac{r^{2} \sin^{2}{\left(r \right)}}{4} + \frac{r^{2} \cos^{2}{\left(r \right)}}{4} + \frac{r \sin{\left(r \right)} \cos{\left(r \right)}}{2} - \frac{\sin^{2}{\left(r \right)}}{4}$$
The graph
The answer [src]
      /  ___   ____\       /  ___   ____\          /  ___   ____\          /  ___   ____\          /  ___   ____\          /  ___   ____\                   /  ___   ____\    /  ___   ____\                   /  ___   ____\    /  ___   ____\
     2|\/ 2 *\/ pi |      2|\/ 3 *\/ pi |         2|\/ 3 *\/ pi |         2|\/ 3 *\/ pi |         2|\/ 2 *\/ pi |         2|\/ 2 *\/ pi |     ___   ____    |\/ 3 *\/ pi |    |\/ 3 *\/ pi |     ___   ____    |\/ 2 *\/ pi |    |\/ 2 *\/ pi |
  sin |------------|   sin |------------|   pi*cos |------------|   pi*sin |------------|   pi*cos |------------|   pi*sin |------------|   \/ 3 *\/ pi *cos|------------|*sin|------------|   \/ 2 *\/ pi *cos|------------|*sin|------------|
      \     2      /       \     3      /          \     3      /          \     3      /          \     2      /          \     2      /                   \     3      /    \     3      /                   \     2      /    \     2      /
- ------------------ + ------------------ - --------------------- - --------------------- + --------------------- + --------------------- - ------------------------------------------------ + ------------------------------------------------
          4                    4                      12                      12                      8                       8                                    6                                                  4                        
$$- \frac{\sqrt{3} \sqrt{\pi} \sin{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)} \cos{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)}}{6} - \frac{\sin^{2}{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)}}{4} - \frac{\pi \sin^{2}{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)}}{12} - \frac{\pi \cos^{2}{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)}}{12} + \frac{\pi \cos^{2}{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)}}{8} + \frac{\sin^{2}{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)}}{4} + \frac{\sqrt{2} \sqrt{\pi} \sin{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)} \cos{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)}}{4} + \frac{\pi \sin^{2}{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)}}{8}$$
=
=
      /  ___   ____\       /  ___   ____\          /  ___   ____\          /  ___   ____\          /  ___   ____\          /  ___   ____\                   /  ___   ____\    /  ___   ____\                   /  ___   ____\    /  ___   ____\
     2|\/ 2 *\/ pi |      2|\/ 3 *\/ pi |         2|\/ 3 *\/ pi |         2|\/ 3 *\/ pi |         2|\/ 2 *\/ pi |         2|\/ 2 *\/ pi |     ___   ____    |\/ 3 *\/ pi |    |\/ 3 *\/ pi |     ___   ____    |\/ 2 *\/ pi |    |\/ 2 *\/ pi |
  sin |------------|   sin |------------|   pi*cos |------------|   pi*sin |------------|   pi*cos |------------|   pi*sin |------------|   \/ 3 *\/ pi *cos|------------|*sin|------------|   \/ 2 *\/ pi *cos|------------|*sin|------------|
      \     2      /       \     3      /          \     3      /          \     3      /          \     2      /          \     2      /                   \     3      /    \     3      /                   \     2      /    \     2      /
- ------------------ + ------------------ - --------------------- - --------------------- + --------------------- + --------------------- - ------------------------------------------------ + ------------------------------------------------
          4                    4                      12                      12                      8                       8                                    6                                                  4                        
$$- \frac{\sqrt{3} \sqrt{\pi} \sin{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)} \cos{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)}}{6} - \frac{\sin^{2}{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)}}{4} - \frac{\pi \sin^{2}{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)}}{12} - \frac{\pi \cos^{2}{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)}}{12} + \frac{\pi \cos^{2}{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)}}{8} + \frac{\sin^{2}{\left(\frac{\sqrt{3} \sqrt{\pi}}{3} \right)}}{4} + \frac{\sqrt{2} \sqrt{\pi} \sin{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)} \cos{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)}}{4} + \frac{\pi \sin^{2}{\left(\frac{\sqrt{2} \sqrt{\pi}}{2} \right)}}{8}$$
-sin(sqrt(2)*sqrt(pi)/2)^2/4 + sin(sqrt(3)*sqrt(pi)/3)^2/4 - pi*cos(sqrt(3)*sqrt(pi)/3)^2/12 - pi*sin(sqrt(3)*sqrt(pi)/3)^2/12 + pi*cos(sqrt(2)*sqrt(pi)/2)^2/8 + pi*sin(sqrt(2)*sqrt(pi)/2)^2/8 - sqrt(3)*sqrt(pi)*cos(sqrt(3)*sqrt(pi)/3)*sin(sqrt(3)*sqrt(pi)/3)/6 + sqrt(2)*sqrt(pi)*cos(sqrt(2)*sqrt(pi)/2)*sin(sqrt(2)*sqrt(pi)/2)/4
Numerical answer [src]
0.0459672226508975
0.0459672226508975
The graph
Integral of r*cosr^2 dr

    Use the examples entering the upper and lower limits of integration.