Mister Exam

Other calculators

Integral of (pi^2-x^2)*sin(nx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                       
  /                       
 |                        
 |  /  2    2\            
 |  \pi  - x /*sin(n*x) dx
 |                        
/                         
-pi                       
$$\int\limits_{- \pi}^{\pi} \left(- x^{2} + \pi^{2}\right) \sin{\left(n x \right)}\, dx$$
Integral((pi^2 - x^2)*sin(n*x), (x, -pi, pi))
The answer (Indefinite) [src]
                                  //                  0                     for n = 0\                                                             
                                  ||                                                 |                                                             
                                  || //cos(n*x)   x*sin(n*x)            \            |                                                             
  /                               || ||-------- + ----------  for n != 0|            |                                                             
 |                                || ||    2          n                 |            |       //    0       for n = 0\      //    0       for n = 0\
 | /  2    2\                     || ||   n                             |            |     2 ||                     |    2 ||                     |
 | \pi  - x /*sin(n*x) dx = C + 2*|<-|<                                 |            | + pi *|<-cos(n*x)            | - x *|<-cos(n*x)            |
 |                                || ||          2                      |            |       ||----------  otherwise|      ||----------  otherwise|
/                                 || ||         x                       |            |       \\    n                /      \\    n                /
                                  || ||         --            otherwise |            |                                                             
                                  || \\         2                       /            |                                                             
                                  ||--------------------------------------  otherwise|                                                             
                                  \\                  n                              /                                                             
$${{-{{2\,n\,x\,\sin \left(n\,x\right)+\left(2-n^2\,x^2\right)\,\cos \left(n\,x\right)}\over{n^2}}-\pi^2\,\cos \left(n\,x\right)}\over{n }}$$
The answer [src]
0
$$0$$
=
=
0
$$0$$

    Use the examples entering the upper and lower limits of integration.