Mister Exam

Other calculators


pi(sqrt(x)e^x)^2

Integral of pi(sqrt(x)e^x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |               2   
 |     /  ___  x\    
 |  pi*\\/ x *e /  dx
 |                   
/                    
0                    
01π(xex)2dx\int\limits_{0}^{1} \pi \left(\sqrt{x} e^{x}\right)^{2}\, dx
Integral(pi*(sqrt(x)*E^x)^2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    π(xex)2dx=π(xex)2dx\int \pi \left(\sqrt{x} e^{x}\right)^{2}\, dx = \pi \int \left(\sqrt{x} e^{x}\right)^{2}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      (2x1)e2x4\frac{\left(2 x - 1\right) e^{2 x}}{4}

    So, the result is: π(2x1)e2x4\frac{\pi \left(2 x - 1\right) e^{2 x}}{4}

  2. Add the constant of integration:

    π(2x1)e2x4+constant\frac{\pi \left(2 x - 1\right) e^{2 x}}{4}+ \mathrm{constant}


The answer is:

π(2x1)e2x4+constant\frac{\pi \left(2 x - 1\right) e^{2 x}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                          
 |                                           
 |              2                         2*x
 |    /  ___  x\           pi*(-1 + 2*x)*e   
 | pi*\\/ x *e /  dx = C + ------------------
 |                                 4         
/                                            
π(2x1)e2x4{{\pi\,\left(2\,x-1\right)\,e^{2\,x}}\over{4}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2525
The answer [src]
         2
pi   pi*e 
-- + -----
4      4  
(e24+14)π\left({{e^2}\over{4}}+{{1}\over{4}}\right)\,\pi
=
=
         2
pi   pi*e 
-- + -----
4      4  
π4+πe24\frac{\pi}{4} + \frac{\pi e^{2}}{4}
Numerical answer [src]
6.5887492527383
6.5887492527383
The graph
Integral of pi(sqrt(x)e^x)^2 dx

    Use the examples entering the upper and lower limits of integration.