Integral of 1+sin2x/sinx^2 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫1dx=x
-
There are multiple ways to do this integral.
Method #1
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin2(x)2sin(x)cos(x)dx=2∫sin2(x)sin(x)cos(x)dx
-
Let u=sin2(x)1.
Then let du=−sin3(x)2cos(x)dx and substitute −2du:
∫4u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u1)du=−2∫u1du
-
The integral of u1 is log(u).
So, the result is: −2log(u)
Now substitute u back in:
−2log(sin2(x)1)
So, the result is: −log(sin2(x)1)
Method #2
-
Rewrite the integrand:
sin2(x)sin(2x)=sin(x)2cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(x)2cos(x)dx=2∫sin(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(sin(x))
So, the result is: 2log(sin(x))
The result is: x−log(sin2(x)1)
-
Add the constant of integration:
x−log(sin2(x)1)+constant
The answer is:
x−log(sin2(x)1)+constant
The answer (Indefinite)
[src]
/
|
| / sin(2*x)\ / 1 \
| |1 + --------| dx = C + x - log|-------|
| | 2 | | 2 |
| \ sin (x) / \sin (x)/
|
/
∫(1+sin2(x)sin(2x))dx=C+x−log(sin2(x)1)
Use the examples entering the upper and lower limits of integration.