Mister Exam

Other calculators

Integral of 1+sin2x/sinx^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  /    sin(2*x)\   
 |  |1 + --------| dx
 |  |       2    |   
 |  \    sin (x) /   
 |                   
/                    
0                    
01(1+sin(2x)sin2(x))dx\int\limits_{0}^{1} \left(1 + \frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right)\, dx
Integral(1 + sin(2*x)/(sin(x)^2), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    1. There are multiple ways to do this integral.

      Method #1

      1. The integral of a constant times a function is the constant times the integral of the function:

        2sin(x)cos(x)sin2(x)dx=2sin(x)cos(x)sin2(x)dx\int \frac{2 \sin{\left(x \right)} \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = 2 \int \frac{\sin{\left(x \right)} \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx

        1. Let u=1sin2(x)u = \frac{1}{\sin^{2}{\left(x \right)}}.

          Then let du=2cos(x)dxsin3(x)du = - \frac{2 \cos{\left(x \right)} dx}{\sin^{3}{\left(x \right)}} and substitute du2- \frac{du}{2}:

          14udu\int \frac{1}{4 u}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            (12u)du=1udu2\int \left(- \frac{1}{2 u}\right)\, du = - \frac{\int \frac{1}{u}\, du}{2}

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)2- \frac{\log{\left(u \right)}}{2}

          Now substitute uu back in:

          log(1sin2(x))2- \frac{\log{\left(\frac{1}{\sin^{2}{\left(x \right)}} \right)}}{2}

        So, the result is: log(1sin2(x))- \log{\left(\frac{1}{\sin^{2}{\left(x \right)}} \right)}

      Method #2

      1. Rewrite the integrand:

        sin(2x)sin2(x)=2cos(x)sin(x)\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}} = \frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}

      2. The integral of a constant times a function is the constant times the integral of the function:

        2cos(x)sin(x)dx=2cos(x)sin(x)dx\int \frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx = 2 \int \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(sin(x))\log{\left(\sin{\left(x \right)} \right)}

        So, the result is: 2log(sin(x))2 \log{\left(\sin{\left(x \right)} \right)}

    The result is: xlog(1sin2(x))x - \log{\left(\frac{1}{\sin^{2}{\left(x \right)}} \right)}

  2. Add the constant of integration:

    xlog(1sin2(x))+constantx - \log{\left(\frac{1}{\sin^{2}{\left(x \right)}} \right)}+ \mathrm{constant}


The answer is:

xlog(1sin2(x))+constantx - \log{\left(\frac{1}{\sin^{2}{\left(x \right)}} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                        
 |                                         
 | /    sin(2*x)\                 /   1   \
 | |1 + --------| dx = C + x - log|-------|
 | |       2    |                 |   2   |
 | \    sin (x) /                 \sin (x)/
 |                                         
/                                          
(1+sin(2x)sin2(x))dx=C+xlog(1sin2(x))\int \left(1 + \frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right)\, dx = C + x - \log{\left(\frac{1}{\sin^{2}{\left(x \right)}} \right)}
The answer [src]
oo
\infty
=
=
oo
\infty
Numerical answer [src]
88.8356847754476
88.8356847754476

    Use the examples entering the upper and lower limits of integration.