Mister Exam

Other calculators

Integral of (1+arctg2x)/(1+4x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  1 + atan(2*x)   
 |  ------------- dx
 |            2     
 |     1 + 4*x      
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{\operatorname{atan}{\left(2 x \right)} + 1}{4 x^{2} + 1}\, dx$$
Integral((1 + atan(2*x))/(1 + 4*x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                       
 |                                       2
 | 1 + atan(2*x)          (1 + atan(2*x)) 
 | ------------- dx = C + ----------------
 |           2                   4        
 |    1 + 4*x                             
 |                                        
/                                         
$$\int \frac{\operatorname{atan}{\left(2 x \right)} + 1}{4 x^{2} + 1}\, dx = C + \frac{\left(\operatorname{atan}{\left(2 x \right)} + 1\right)^{2}}{4}$$
The graph
Numerical answer [src]
0.86001892972532
0.86001892972532

    Use the examples entering the upper and lower limits of integration.