Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^4/(x^2+1) Integral of x^4/(x^2+1)
  • Integral of 4*x^3 Integral of 4*x^3
  • Integral of dx/sinxcosx Integral of dx/sinxcosx
  • Integral of dx/(4x-1) Integral of dx/(4x-1)
  • Identical expressions

  • one *sin(x)/cos^ five (x)
  • 1 multiply by sinus of (x) divide by co sinus of e of to the power of 5(x)
  • one multiply by sinus of (x) divide by co sinus of e of to the power of five (x)
  • 1*sin(x)/cos5(x)
  • 1*sinx/cos5x
  • 1*sin(x)/cos⁵(x)
  • 1sin(x)/cos^5(x)
  • 1sin(x)/cos5(x)
  • 1sinx/cos5x
  • 1sinx/cos^5x
  • 1*sin(x) divide by cos^5(x)
  • 1*sin(x)/cos^5(x)dx
  • Similar expressions

  • 1*sinx/cos^5(x)

Integral of 1*sin(x)/cos^5(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |   sin(x)   
 |  ------- dx
 |     5      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\cos^{5}{\left(x \right)}}\, dx$$
Integral(sin(x)/cos(x)^5, (x, 0, 1))
The answer (Indefinite) [src]
  /                          
 |                           
 |  sin(x)              1    
 | ------- dx = C + ---------
 |    5                  4   
 | cos (x)          4*cos (x)
 |                           
/                            
$$\int \frac{\sin{\left(x \right)}}{\cos^{5}{\left(x \right)}}\, dx = C + \frac{1}{4 \cos^{4}{\left(x \right)}}$$
The graph
The answer [src]
  1       1    
- - + ---------
  4        4   
      4*cos (1)
$$- \frac{1}{4} + \frac{1}{4 \cos^{4}{\left(1 \right)}}$$
=
=
  1       1    
- - + ---------
  4        4   
      4*cos (1)
$$- \frac{1}{4} + \frac{1}{4 \cos^{4}{\left(1 \right)}}$$
-1/4 + 1/(4*cos(1)^4)
Numerical answer [src]
2.68354479793904
2.68354479793904

    Use the examples entering the upper and lower limits of integration.