Mister Exam

Other calculators

Integral of (1-x^2)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/20            
   /             
  |              
  |          2   
  |  /     2\    
  |  \1 - x /  dx
  |              
 /               
 0               
$$\int\limits_{0}^{\frac{1}{20}} \left(1 - x^{2}\right)^{2}\, dx$$
Integral((1 - x^2)^2, (x, 0, 1/20))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 |         2                 3    5
 | /     2\               2*x    x 
 | \1 - x /  dx = C + x - ---- + --
 |                         3     5 
/                                  
$$\int \left(1 - x^{2}\right)^{2}\, dx = C + \frac{x^{5}}{5} - \frac{2 x^{3}}{3} + x$$
The graph
The answer [src]
2396003 
--------
48000000
$$\frac{2396003}{48000000}$$
=
=
2396003 
--------
48000000
$$\frac{2396003}{48000000}$$
2396003/48000000
Numerical answer [src]
0.0499167291666667
0.0499167291666667

    Use the examples entering the upper and lower limits of integration.