Mister Exam

Other calculators

Integral of (1-cos(x))/(x-sin(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi             
   /              
  |               
  |  1 - cos(x)   
  |  ---------- dx
  |  x - sin(x)   
  |               
 /                
 pi               
$$\int\limits_{\pi}^{2 \pi} \frac{1 - \cos{\left(x \right)}}{x - \sin{\left(x \right)}}\, dx$$
Integral((1 - cos(x))/(x - sin(x)), (x, pi, 2*pi))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | 1 - cos(x)                         
 | ---------- dx = C + log(x - sin(x))
 | x - sin(x)                         
 |                                    
/                                     
$$\int \frac{1 - \cos{\left(x \right)}}{x - \sin{\left(x \right)}}\, dx = C + \log{\left(x - \sin{\left(x \right)} \right)}$$
The graph
The answer [src]
-log(pi) + log(2*pi)
$$- \log{\left(\pi \right)} + \log{\left(2 \pi \right)}$$
=
=
-log(pi) + log(2*pi)
$$- \log{\left(\pi \right)} + \log{\left(2 \pi \right)}$$
-log(pi) + log(2*pi)
Numerical answer [src]
0.693147180559945
0.693147180559945

    Use the examples entering the upper and lower limits of integration.