Integral of ((1-cos(2x))^0.5) dx
The solution
The answer (Indefinite)
[src]
$${{\left(-\sqrt{2}\,\cos \left(2\,x\right)-\sqrt{2}\right)\,\sin
\left({{{\rm atan2}\left(\sin \left(2\,x\right) , \cos \left(2\,x
\right)\right)+\pi}\over{2}}\right)+\sqrt{2}\,\sin \left(2\,x\right)
\,\cos \left({{{\rm atan2}\left(\sin \left(2\,x\right) , \cos \left(
2\,x\right)\right)+\pi}\over{2}}\right)}\over{2}}$$
1
/
|
| ______________
| \/ 1 - cos(2*x) dx
|
/
0
$${{-\sqrt{2}\,\sin 2\,\cos \left({{\arctan \left({{\sin 2}\over{
\cos 2}}\right)}\over{2}}\right)+\sqrt{2}\,\cos 2\,\cos \left({{
\arctan \left({{\sin 2}\over{\cos 2}}\right)}\over{2}}\right)+\sqrt{
2}\,\cos \left({{\arctan \left({{\sin 2}\over{\cos 2}}\right)}\over{
2}}\right)+2^{{{3}\over{2}}}}\over{2}}$$
=
1
/
|
| ______________
| \/ 1 - cos(2*x) dx
|
/
0
$$\int\limits_{0}^{1} \sqrt{- \cos{\left(2 x \right)} + 1}\, dx$$
Use the examples entering the upper and lower limits of integration.