Integral of (1-8x^2)cos4xdx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(1−8x2)cos(4x)=−8x2cos(4x)+cos(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−8x2cos(4x))dx=−8∫x2cos(4x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=cos(4x).
Then du(x)=2x.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=2x and let dv(x)=sin(4x).
Then du(x)=21.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−8cos(4x))dx=−8∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −32sin(4x)
So, the result is: −2x2sin(4x)−xcos(4x)+4sin(4x)
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
The result is: −2x2sin(4x)−xcos(4x)+2sin(4x)
Method #2
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=1−8x2 and let dv(x)=cos(4x).
Then du(x)=−16x.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=−4x and let dv(x)=sin(4x).
Then du(x)=−4.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
Method #3
-
Rewrite the integrand:
(1−8x2)cos(4x)=−8x2cos(4x)+cos(4x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−8x2cos(4x))dx=−8∫x2cos(4x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=cos(4x).
Then du(x)=2x.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=2x and let dv(x)=sin(4x).
Then du(x)=21.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−8cos(4x))dx=−8∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: −32sin(4x)
So, the result is: −2x2sin(4x)−xcos(4x)+4sin(4x)
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
The result is: −2x2sin(4x)−xcos(4x)+2sin(4x)
-
Add the constant of integration:
−2x2sin(4x)−xcos(4x)+2sin(4x)+constant
The answer is:
−2x2sin(4x)−xcos(4x)+2sin(4x)+constant
The answer (Indefinite)
[src]
/
|
| / 2\ sin(4*x) 2
| \1 - 8*x /*cos(4*x) dx = C + -------- - x*cos(4*x) - 2*x *sin(4*x)
| 2
/
∫(1−8x2)cos(4x)dx=C−2x2sin(4x)−xcos(4x)+2sin(4x)
The graph
Use the examples entering the upper and lower limits of integration.