Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^-1 Integral of x^-1
  • Integral of x*exp(x) Integral of x*exp(x)
  • Integral of k Integral of k
  • Integral of xe^(x) Integral of xe^(x)
  • Identical expressions

  • one /(xlnx(ln(lnx))^ zero . five)
  • 1 divide by (xlnx(ln(lnx)) to the power of 0.5)
  • one divide by (xlnx(ln(lnx)) to the power of zero . five)
  • 1/(xlnx(ln(lnx))0.5)
  • 1/xlnxlnlnx0.5
  • 1/xlnxlnlnx^0.5
  • 1 divide by (xlnx(ln(lnx))^0.5)
  • 1/(xlnx(ln(lnx))^0.5)dx

Integral of 1/(xlnx(ln(lnx))^0.5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                              
  /                              
 |                               
 |               1               
 |  1*------------------------ dx
 |               _____________   
 |    x*log(x)*\/ log(log(x))    
 |                               
/                                
3                                
$$\int\limits_{3}^{1} 1 \cdot \frac{1}{x \log{\left(x \right)} \sqrt{\log{\left(\log{\left(x \right)} \right)}}}\, dx$$
Integral(1/(x*log(x)*sqrt(log(log(x)))), (x, 3, 1))
The answer (Indefinite) [src]
  /                                                     
 |                                                      
 |              1                          _____________
 | 1*------------------------ dx = C + 2*\/ log(log(x)) 
 |              _____________                           
 |   x*log(x)*\/ log(log(x))                            
 |                                                      
/                                                       
$$2\,\sqrt{\log \log x}$$
The answer [src]
           _____________
oo*I - 2*\/ log(log(3)) 
$${\it \%a}$$
=
=
           _____________
oo*I - 2*\/ log(log(3)) 
$$- 2 \sqrt{\log{\left(\log{\left(3 \right)} \right)}} + \infty i$$
Numerical answer [src]
(-0.51536201078096 + 13.365902301301j)
(-0.51536201078096 + 13.365902301301j)

    Use the examples entering the upper and lower limits of integration.