Mister Exam

Other calculators

Integral of 1/(xln(ln(x))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |  x*log(log(x))   
 |                  
/                   
1                   
$$\int\limits_{1}^{\infty} \frac{1}{x \log{\left(\log{\left(x \right)} \right)}}\, dx$$
Integral(1/(x*log(log(x))), (x, 1, oo))
The answer (Indefinite) [src]
  /                                      
 |                                       
 |       1                               
 | ------------- dx = C + Ei(log(log(x)))
 | x*log(log(x))                         
 |                                       
/                                        
$$\int \frac{1}{x \log{\left(\log{\left(x \right)} \right)}}\, dx = C + \operatorname{Ei}{\left(\log{\left(\log{\left(x \right)} \right)} \right)}$$
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo

    Use the examples entering the upper and lower limits of integration.